2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題含解析_第1頁(yè)
2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題含解析_第2頁(yè)
2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題含解析_第3頁(yè)
2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題含解析_第4頁(yè)
2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東省棗莊市部分重點(diǎn)高中高一下數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.直線l:與圓C:交于A,B兩點(diǎn),則當(dāng)弦AB最短時(shí)直線l的方程為A. B.C. D.2.已知直線平面,直線平面,下列四個(gè)命題中正確的是().()()()()A.()與() B.()與() C.()與() D.()與()3.無(wú)論取何實(shí)數(shù),直線恒過(guò)一定點(diǎn),則該定點(diǎn)坐標(biāo)為()A. B. C. D.4.已知點(diǎn)和點(diǎn),且,則實(shí)數(shù)的值是()A.或 B.或 C.或 D.或5.的值為()A. B. C. D.6.已知是的邊上的中點(diǎn),若向量,,則向量等于()A. B. C. D.7.已知正項(xiàng)數(shù)列,若點(diǎn)在函數(shù)的圖像上,則()A.12 B.13 C.14 D.168.已知向量,,若,則的值為()A. B.1 C. D.9.在長(zhǎng)方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.10.直線與平行,則的值為()A. B.或 C.0 D.-2或0二、填空題:本大題共6小題,每小題5分,共30分。11.下列結(jié)論中:①②函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱③函數(shù)的圖像的一條對(duì)稱軸為④其中正確的結(jié)論序號(hào)為______.12.已知,則的取值范圍是_______;13.若直線l1:y=kx+1與直線l2關(guān)于點(diǎn)(2,3)對(duì)稱,則直線l2恒過(guò)定點(diǎn)_____,l1與l2的距離的最大值是_____.14.已知數(shù)列中,其中,,那么________15.設(shè),其中,則的值為________.16.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在銳角中,若角,求的值域.18.定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱為三角形”數(shù)列對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.(1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若,是數(shù)列的保三角形函數(shù)”,求的取值范圍;(2)已知數(shù)列的首項(xiàng)為2019,是數(shù)列的前項(xiàng)和,且滿足,證明是“三角形”數(shù)列;(3)求證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.19.已知函數(shù)的最小正周期為,且其圖象的一個(gè)對(duì)稱軸為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,再將圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.(1)求的解析式,并寫出其單調(diào)遞增區(qū)間;(2)求函數(shù)在區(qū)間上的零點(diǎn);(3)對(duì)于任意的實(shí)數(shù),記函數(shù)在區(qū)間上的最大值為,最小值為,求函數(shù)在區(qū)間上的最大值.20.如圖,函數(shù),其中的圖象與y軸交于點(diǎn).(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.21.已知⊙C經(jīng)過(guò)點(diǎn)、兩點(diǎn),且圓心C在直線上.(1)求⊙C的方程;(2)若直線與⊙C總有公共點(diǎn),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

先求出直線經(jīng)過(guò)的定點(diǎn),再求出弦AB最短時(shí)直線l的方程.【詳解】由題得,所以直線l過(guò)定點(diǎn)P.當(dāng)CP⊥l時(shí),弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點(diǎn)睛】本題主要考查直線過(guò)定點(diǎn)問(wèn)題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.2、D【解析】

∵直線l⊥平面α,若α∥β,則直線l⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,即(1)正確;∵直線l⊥平面α,若α⊥β,則l與m可能平行、異面也可能相交,故(2)錯(cuò)誤;∵直線l⊥平面α,若l∥m,則m⊥平面α,∵直線m?平面β,∴α⊥β;故(3)正確;∵直線l⊥平面α,若l⊥m,則m∥α或m?α,則α與β平行或相交,故(4)錯(cuò)誤;故選D.3、A【解析】

通過(guò)整理直線的形式,可求得所過(guò)的定點(diǎn).【詳解】直線可整理為,當(dāng),解得,無(wú)論為何值,直線總過(guò)定點(diǎn).故選A.【點(diǎn)睛】本題考查了直線過(guò)定點(diǎn)問(wèn)題,屬于基礎(chǔ)題型.4、A【解析】

直接利用兩點(diǎn)間距離公式得到答案.【詳解】已知點(diǎn)和點(diǎn)故答案選A【點(diǎn)睛】本題考查了兩點(diǎn)間距離公式,意在考查學(xué)生的計(jì)算能力.5、B【解析】

直接利用誘導(dǎo)公式結(jié)合特殊角的三角函數(shù)求解即可.【詳解】,故選B.【點(diǎn)睛】本題主要考查誘導(dǎo)公式以及特殊角的三角函數(shù),意在考查對(duì)基礎(chǔ)知識(shí)的掌握情況,屬于簡(jiǎn)單題.6、C【解析】

根據(jù)向量加法的平行四邊形法則,以及平行四邊形的性質(zhì)可得,,解出向量.【詳解】根據(jù)平行四邊形法則以及平行四邊形的性質(zhì),有.故選.【點(diǎn)睛】本題考查向量加法的平行四邊形法則以及平行四邊形的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.7、A【解析】

由已知點(diǎn)在函數(shù)圖象上求出通項(xiàng)公式,得,由對(duì)數(shù)的定義計(jì)算.【詳解】由題意,,∴,∴.故選:A.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,考查對(duì)數(shù)的運(yùn)算.屬于基礎(chǔ)題.8、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】

畫出長(zhǎng)方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫出長(zhǎng)方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點(diǎn)睛】本題考查了長(zhǎng)方體中異面直線的夾角求法,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.10、A【解析】

若直線與平行,則,解出a值后,驗(yàn)證兩條直線是否重合,可得答案.【詳解】若直線與平行,

則,

解得或,

又時(shí),直線與表示同一條直線,

故,

故選A.本題考查的知識(shí)點(diǎn)是直線的一般式方程,直線的平行關(guān)系,正確理解直線平行的幾何意義是解答的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、①③④【解析】

由兩角和的正切公式的變形,化簡(jiǎn)可得所求值,可判斷①正確;由正切函數(shù)的對(duì)稱中心可判斷②錯(cuò)誤;由余弦函數(shù)的對(duì)稱軸特點(diǎn)可判斷③正確;由同角三角函數(shù)基本關(guān)系式和輔助角公式、二倍角公式和誘導(dǎo)公式,化簡(jiǎn)可得所求值,可判斷④正確.【詳解】①,故①正確;②函數(shù)的對(duì)稱中心為,,則圖象不關(guān)于點(diǎn)對(duì)稱,故②錯(cuò)誤;③函數(shù),由為最小值,可得圖象的一條對(duì)稱軸為,故③正確;④,故④正確.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì)應(yīng)用以及三角函數(shù)的恒等變換,意在考查學(xué)生的化簡(jiǎn)運(yùn)算能力.12、【解析】

本題首先可以根據(jù)向量的運(yùn)算得出,然后等式兩邊同時(shí)平方并化簡(jiǎn),得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因?yàn)?,所以,即,因?yàn)?,所以,即,所以的取值范圍是.【點(diǎn)睛】本題考查向量的運(yùn)算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計(jì)算能力,是簡(jiǎn)單題.13、(4,5)4.【解析】

根據(jù)所過(guò)定點(diǎn)與所過(guò)定點(diǎn)關(guān)于對(duì)稱可得,與的距離的最大值就是兩定點(diǎn)之間的距離.【詳解】∵直線:經(jīng)過(guò)定點(diǎn),又兩直線關(guān)于點(diǎn)對(duì)稱,則兩直線經(jīng)過(guò)的定點(diǎn)也關(guān)于點(diǎn)對(duì)稱∴直線恒過(guò)定點(diǎn),∴與的距離的最大值就是兩定點(diǎn)之間的距離,即為.故答案為:,.【點(diǎn)睛】本題考查了過(guò)兩條直線交點(diǎn)的直線系方程,屬于基礎(chǔ)題.14、1【解析】

由已知數(shù)列遞推式可得數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式求解.【詳解】由,得,,則數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,.故答案為:1.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系、等比數(shù)列通項(xiàng)公式,考查運(yùn)算求解能力,特別是對(duì)復(fù)雜式子的理解.15、【解析】

由兩角差的正弦公式以及誘導(dǎo)公式,即可求出的值.【詳解】,所以,因?yàn)椋剩军c(diǎn)睛】本題主要考查兩角差的正弦公式的逆用以及誘導(dǎo)公式的應(yīng)用.16、【解析】該幾何體是由兩個(gè)高為1的圓錐與一個(gè)高為2的圓柱組合而成,所以該幾何體的體積為.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】

(1)利用二倍角、輔助角公式化簡(jiǎn),然后利用單調(diào)區(qū)間公式求解單調(diào)區(qū)間;(2)根據(jù)條件求解出的范圍,然后再求解的值域.【詳解】(1),令,解得:,所以單調(diào)減區(qū)間為:,;(2)由銳角三角形可知:,所以,則,又,所以,,則.【點(diǎn)睛】本題考查三角恒等變換以及三角函數(shù)值域問(wèn)題,難度較易.根據(jù)三角形形狀求解角范圍的時(shí)候,要注意到隱含條件的使用.18、(1);(2)見(jiàn)解析;(3)見(jiàn)解析.【解析】

(1)先由條件得是三角形數(shù)列,再利用,是數(shù)列的“保三角形函數(shù)”,得到,解得的取值范圍;(2)先利用條件求出數(shù)列的通項(xiàng)公式,再證明其滿足“三角形”數(shù)列的定義即可;(3)根據(jù)函數(shù),,是數(shù)列1,,的“保三角形函數(shù)”,可以得到①1,,是三角形數(shù)列,所以,即,②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即,③,,是三角形數(shù)列;結(jié)論為在利用,是單調(diào)遞減函數(shù),就可求出對(duì)應(yīng)的范圍,即可證明.【詳解】(1)解:顯然,對(duì)任意正整數(shù)都成立,即是三角形數(shù)列,因?yàn)椋@然有,由得,解得,所以當(dāng)時(shí),是數(shù)列的“保三角形函數(shù)”;(2)證:由,當(dāng)時(shí),,∴,∴,當(dāng)時(shí),即,解得,∴,∴數(shù)列是以2019為首項(xiàng),以為公比的等比數(shù)列,∴,顯然,因?yàn)椋允恰叭切巍睌?shù)列;(3)證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”,必須滿足三個(gè)條件:①1,,是三角形數(shù)列,所以,即;②數(shù)列中的各項(xiàng)必須在定義域內(nèi),即;③,,是三角形數(shù)列,由于,是單調(diào)遞減函數(shù),所以,解得,所以函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.【點(diǎn)睛】本題主要考查數(shù)列與三角函數(shù)的綜合,考查在新定義下數(shù)列與三角函數(shù)的結(jié)合,考查等比數(shù)列的證明,等比數(shù)列的通項(xiàng)公式,考查轉(zhuǎn)化思想,屬于難題.19、(1),單調(diào)遞增區(qū)間為;(2)、、;(3).【解析】

(1)由函數(shù)的最小正周期求出的值,由圖象的對(duì)稱軸方程得出的值,從而可求出函數(shù)的解析式;(2)先利用圖象變換的規(guī)律得出函數(shù)的解析式,然后在區(qū)間上解方程可得出函數(shù)的零點(diǎn);(3)對(duì)分三種情況、、分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,得出和,可得出關(guān)于的表達(dá)式,再利用函數(shù)的單調(diào)性得出函數(shù)的最大值.【詳解】(1)由題意可知,,.令,即,即函數(shù)的圖象的對(duì)稱軸方程為.由于函數(shù)圖象的一條對(duì)稱軸方程為,,,,,則,因此,.函數(shù)的單調(diào)遞增區(qū)間為;(2)將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,得到函數(shù).再將所得函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù).令,即,化簡(jiǎn)得,得或.由于,當(dāng)時(shí),;當(dāng)時(shí),或.因此,函數(shù)在上的零點(diǎn)為、、;(3)當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,,由于,,此時(shí),;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,,由于,,此時(shí),;當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,所以,,,此時(shí),.所以,.當(dāng)時(shí),函數(shù)單調(diào)遞減,;當(dāng)時(shí),函數(shù)單調(diào)遞增,此時(shí);當(dāng)時(shí),,當(dāng)時(shí),.綜上所述:.【點(diǎn)睛】本題考查利用三角函數(shù)性質(zhì)求解析式、考查三角函數(shù)圖象變換、三角函數(shù)的零點(diǎn)以及三角函數(shù)的最值,考查三角函數(shù)在動(dòng)區(qū)間上的最值,要充分考查函數(shù)的單調(diào)性,結(jié)合三角函數(shù)的單調(diào)性求解,考查分類討論數(shù)學(xué)思想,屬于中等題.20、(1),(2),,(3)【解析】

(1)由函數(shù)圖像過(guò)定點(diǎn),代入運(yùn)算即可得解;(2)由三角函數(shù)的單調(diào)增區(qū)間的求法求解即可;(3)由,求解不等式即可得解.【詳解】解:(1)因?yàn)楹瘮?shù)圖象過(guò)點(diǎn),所以,即.因?yàn)椋裕?)由(1)得,所以當(dāng),,即,時(shí),是增函數(shù),故的單調(diào)遞增區(qū)間為,.(3)由,得,所以,,即,,所以時(shí),x的集合為.【點(diǎn)睛】本題考查了利用函數(shù)圖像的性質(zhì)求解函數(shù)解析式,重點(diǎn)考查了三角函數(shù)單調(diào)區(qū)間的求法及解三角不等式,屬基礎(chǔ)題.21、(1)(2)【解析】試題分析:(1)解法1:由題意利用待定系數(shù)法可得⊙C方程為.解法2:由題意結(jié)合幾何關(guān)系確定圓心坐標(biāo)和半徑的長(zhǎng)度可得⊙C的方程為.(2)解法1:利用圓心到直線的距離與圓的半徑的關(guān)系得到關(guān)系

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論