2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題含解析_第1頁
2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題含解析_第2頁
2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題含解析_第3頁
2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題含解析_第4頁
2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆四川省宜賓市高一下數(shù)學(xué)期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列的前n項和為,若,,,則()A. B. C. D.2.如圖是某個正方體的平面展開圖,,是兩條側(cè)面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為3.設(shè)a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.94.在平面直角坐標(biāo)系中,已知點,點,直線:.如果對任意的點到直線的距離均為定值,則點關(guān)于直線的對稱點的坐標(biāo)為()A. B. C. D.5.樣本中共有個個體,其值分別為、、、、.若該樣本的平均值為,則樣本的方差為()A. B. C. D.6.設(shè)a,b,c表示三條不同的直線,M表示平面,給出下列四個命題:其中正確命題的個數(shù)有()①若a//M,b//M,則a//b;②若b?M,a//b,則a//M;③若a⊥c,b⊥c,則a//b;④若a//c,b//c,則a//b.A.0個 B.1個 C.2個 D.3個7.若,是夾角為的兩個單位向量,則與的夾角為()A. B. C. D.8.同時拋擲兩枚骰子,朝上的點數(shù)之和為奇數(shù)的概率是()A. B. C. D.9.已知是不共線的非零向量,,,,則四邊形是()A.梯形 B.平行四邊形 C.矩形 D.菱形10.下列各數(shù)中最小的數(shù)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若,則實數(shù)的值為__________.12.設(shè)數(shù)列的通項公式,則數(shù)列的前20項和為____________.13.不等式x(2x﹣1)<0的解集是_____.14.一個社會調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1500,2000)(元)月收入段應(yīng)抽出人.15.若直線與曲線相交于A,B兩點,O為坐標(biāo)原點,當(dāng)?shù)拿娣e取最大值時,實數(shù)m的取值____.16.若存在實數(shù)使得關(guān)于的不等式恒成立,則實數(shù)的取值范圍是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.18.某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學(xué)生成績的方差、,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.19.某種汽車,購車費用是10萬元,每年使用的保險費和汽油費為萬元,年維修費第一年為萬元,以后逐年遞增萬元,問這種汽車使用多少年時,它的年平均費用最少?20.已知集合.(Ⅰ)求;(Ⅱ)若集合,寫出集合的所有子集.21.已知直線截圓所得的弦長為.直線的方程為.(1)求圓的方程;(2)若直線過定點,點在圓上,且,為線段的中點,求點的軌跡方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)等比數(shù)列前n項和的性質(zhì)可知、、成等比數(shù)列,即可得關(guān)于的等式,化簡即可得解.【詳解】等比數(shù)列的前n項和為,若,,根據(jù)等比數(shù)列前n項和性質(zhì)可知,、、滿足:化簡可得故選:D【點睛】本題考查了等比數(shù)列前n項和的性質(zhì)及簡單應(yīng)用,屬于基礎(chǔ)題.2、D【解析】

先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.3、D【解析】

試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當(dāng)且僅當(dāng)時,即時取等號.考點:重要不等式,等比中項4、B【解析】

利用點到直線的距離公式表示出,由對任意的點到直線的距離均為定值,從而可得,求得直線的方程,再利用點關(guān)于直線對稱的性質(zhì)即可得到對稱點的坐標(biāo)?!驹斀狻坑牲c到直線的距離公式可得:點到直線的距離由于對任意的點到直線的距離均為定值,所以,即,所以直線的方程為:設(shè)點關(guān)于直線的對稱點的坐標(biāo)為故,解得:,所以設(shè)點關(guān)于直線的對稱點的坐標(biāo)為故答案選B【點睛】本題主要考查點關(guān)于直線對稱的對稱點的求法,涉及點到直線的距離,兩直線垂直斜率的關(guān)系,中點公式等知識點,考查學(xué)生基本的計算能力,屬于中檔題。5、D【解析】

根據(jù)樣本的平均數(shù)計算出的值,再利用方差公式計算出樣本的方差.【詳解】由題意可知,,解得,因此,該樣本的方差為,故選:D.【點睛】本題考查方差與平均數(shù)的計算,靈活利用平均數(shù)與方差公式進(jìn)行求解是解本題的關(guān)鍵,考查運算求解能力,屬于基礎(chǔ)題.6、B【解析】

由空間直線的位置關(guān)系及空間直線與平面的位置關(guān)系逐一判斷即可得解.【詳解】解:對于①,若a//M,b//M,則a//b或與相交或與異面,即①錯誤;對于②,若b?M,a//b,則a//M或a?M,即②錯誤;對于③,若a⊥c,b⊥c,則a//b或與相交或與異面,即③錯誤;對于④,若a//c,b//c,由空間直線平行的傳遞性可得a//b,即④正確,即正確命題的個數(shù)有1個,故選:B.【點睛】本題考查了空間直線的位置關(guān)系,重點考查了空間直線與平面的位置關(guān)系,屬基礎(chǔ)題.7、A【解析】

根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點睛】考查向量數(shù)量積的運算及計算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.8、A【解析】

分別求出基本事件的總數(shù)和點數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計算公式求解.【詳解】同時拋擲兩枚骰子,總共有種情況,朝上的點數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點睛】本題考查古典概型概率的求法,屬于基礎(chǔ)題.9、A【解析】

本題首先可以根據(jù)向量的運算得出,然后根據(jù)以及向量平行的相關(guān)性質(zhì)即可得出四邊形的形狀.【詳解】因為,所以,因為,是不共線的非零向量,所以且,所以四邊形是梯形,故選A.【點睛】本題考查根據(jù)向量的相關(guān)性質(zhì)來判斷四邊形的形狀,考查向量的運算以及向量平行的相關(guān)性質(zhì),如果一組對邊平行且不相等,那么四邊形是梯形;如果對邊平行且相等,那么四邊形是平行四邊形;相鄰兩邊長度相等的平行四邊形是菱形;相鄰兩邊垂直的平行四邊形是矩形,是簡單題.10、D【解析】

將選項中的數(shù)轉(zhuǎn)化為十進(jìn)制的數(shù),由此求得最小值的數(shù).【詳解】依題意,,,,故最小的為D.所以本小題選D.【點睛】本小題主要考查不同進(jìn)制的數(shù)比較大小,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用共線向量等價條件列等式求出實數(shù)的值.【詳解】,,且,,因此,,故答案為.【點睛】本題考查利用共線向量來求參數(shù),解題時要充分利用共線向量坐標(biāo)表示列等式求解,考查計算能力,屬于基礎(chǔ)題.12、【解析】

對去絕對值,得,再求得的前項和,代入=20即可求解【詳解】由題的前n項和為的前20項和,代入可得.故答案為:260【點睛】本題考查等差數(shù)列的前項和,去絕對值是關(guān)鍵,考查計算能力,是基礎(chǔ)題13、【解析】

求出不等式對應(yīng)方程的實數(shù)根,即可寫出不等式的解集,得到答案.【詳解】由不等式對應(yīng)方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、16【解析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應(yīng)抽出81×1.2=16人??键c:?頻率分布直方圖的應(yīng)用;?分層抽樣。15、【解析】

點O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點,半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點,則直線的斜率,則點O到的距離,又,當(dāng)且僅當(dāng),即時,取得最大值.所以,解得舍去).故答案為.【點睛】本題考查了點到直線的距離,三角形面積,均值不等式,意在考查學(xué)生的計算能力.16、【解析】

先求得的取值范圍,將題目所給不等式轉(zhuǎn)化為含的絕對值不等式,對分成三種情況,結(jié)合絕對值不等式的解法和不等式恒成立的思想,求得的取值范圍.【詳解】由于,故可化簡得恒成立.當(dāng)時,顯然成立.當(dāng)時,可得,,可得且,可得,即,解得.當(dāng)時,可得,可得且,可得,即,解得.綜上所述,的取值范圍是.【點睛】本小題主要考查三角函數(shù)的值域,考查含有絕對值不等式恒成立問題,考查存在性問題的求解策略,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】

(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以當(dāng)時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當(dāng)時,,所以在上是增函數(shù),所以時,,當(dāng)時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)中,一定存在兩個實數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,即,也就是說,在,,,這2019個數(shù)中,一定有兩個數(shù)滿足,即一定存在兩個實數(shù),滿足,從而得證.【點睛】本題主要考查了不等式的證明,根據(jù)存在性問題求參數(shù)的取值范圍,三角函數(shù)的單調(diào)性,萬能公式,考查了創(chuàng)新能力,屬于難題.18、(3)甲班參加;(4).【解析】

試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.(4)成績在85分及以上的學(xué)生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機(jī)抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.(4)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.考點:3.古典概型及其概率計算公式;4.莖葉圖.19、這種汽車使用年時,它的年平均費用最小【解析】

設(shè)這種汽車使用年時,它的年平均費用為萬元,則,于是,當(dāng),即時,取得最小值,所以這種汽車使用10年時,它的年平均費用最小20、(Ⅰ)(Ⅱ).【解析】

(Ⅰ)求解二次不等式從而求得集合A,利用指數(shù)函數(shù)的圖像求出集合B,再進(jìn)行并集運算即可;(Ⅱ)依次求出,,即可寫出集合C的子集.【詳解】(Ⅰ)由,得,即有,于是.作出函數(shù)的圖象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【點睛】本題考查集合的基本運算,集合的子集,屬于基礎(chǔ)題.21、(1);(2).【解析】

(1)利用點到直線的距離公式得到圓心到直線的距離,利用直線截圓得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論