云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷及答案解析_第1頁
云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷及答案解析_第2頁
云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷及答案解析_第3頁
云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷及答案解析_第4頁
云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省個舊市重點達標名校中考數(shù)學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個多邊形的內角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.102.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a3.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,24.如果關于x的分式方程有負數(shù)解,且關于y的不等式組無解,則符合條件的所有整數(shù)a的和為()A.﹣2 B.0 C.1 D.35.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米6.下列說法中,正確的是()A.兩個全等三角形,一定是軸對稱的B.兩個軸對稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形7.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×58.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-39.cos60°的值等于()A.1 B. C. D.10.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.12.在2018年幫助居民累計節(jié)約用水305000噸,將數(shù)字305000用科學記數(shù)法表示為_____.13.計算:2a×(﹣2b)=_____.14.比較大?。篲__1.(填“>”、“<”或“=”)15.某校九年級(1)班40名同學中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學年齡的中位數(shù)是___歲.16.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.17.可燃冰是一種新型能源,它的密度很小,可燃冰的質量僅為.數(shù)字0.00092用科學記數(shù)法表示是__________.三、解答題(共7小題,滿分69分)18.(10分)在學習了矩形這節(jié)內容之后,明明同學發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當?shù)闹凳嵌嗌贂r,△PDE的周長最?。咳鐖D(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.19.(5分)某通訊公司推出了A,B兩種上寬帶網(wǎng)的收費方式(詳情見下表)設月上網(wǎng)時間為xh(x為非負整數(shù)),請根據(jù)表中提供的信息回答下列問題(1)設方案A的收費金額為y1元,方案B的收費金額為y2元,分別寫出y1,y2關于x的函數(shù)關系式;(2)當35<x<50時,選取哪種方式能節(jié)省上網(wǎng)費,請說明理由20.(8分)先化簡:,然后從的范圍內選取一個合適的整數(shù)作為x的值代入求值.21.(10分)如圖,在⊙O的內接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求證:△ABD是等邊三角形;(2)若BD=3,求⊙O的半徑.22.(10分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.23.(12分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點、的坐標分別為,.請在如圖所示的網(wǎng)格平面內作出平面直角坐標系;請作出關于軸對稱的;點的坐標為.的面積為.24.(14分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)求A,B兩種型號的電風扇的銷售單價.若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

設這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內角與外角的知識點,此題要結合多邊形的內角和與外角和,根據(jù)題目中的等量關系,構建方程求解即可.2、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關鍵是掌握計算法則.3、D【解析】

根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.4、B【解析】

解關于y的不等式組,結合解集無解,確定a的范圍,再由分式方程有負數(shù)解,且a為整數(shù),即可確定符合條件的所有整數(shù)a的值,最后求所有符合條件的值之和即可.【詳解】由關于y的不等式組,可整理得∵該不等式組解集無解,∴2a+4≥﹣2即a≥﹣3又∵得x=而關于x的分式方程有負數(shù)解∴a﹣4<1∴a<4于是﹣3≤a<4,且a為整數(shù)∴a=﹣3、﹣2、﹣1、1、1、2、3則符合條件的所有整數(shù)a的和為1.故選B.【點睛】本題考查的是解分式方程與解不等式組,求各種特殊解的前提都是先求出整個解集,再在解集中求特殊解,了解求特殊解的方法是解決本題的關鍵.5、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.6、B【解析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.解:A.兩個全等三角形,一定是軸對稱的錯誤,三角形全等位置上不一定關于某一直線對稱,故本選項錯誤;B.兩個軸對稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形,錯誤;D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形,錯誤.故選B.7、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據(jù)兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎題.8、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.9、A【解析】

根據(jù)特殊角的三角函數(shù)值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關鍵.10、C【解析】分析:先求出A點坐標,再根據(jù)圖形平移的性質得出A1點的坐標,故可得出反比例函數(shù)的解析式,把O1點的橫坐標代入即可得出結論.詳解:∵OB=1,AB⊥OB,點A在函數(shù)(x<0)的圖象上,∴當x=?1時,y=2,∴A(?1,2).∵此矩形向右平移3個單位長度到的位置,∴B1(2,0),∴A1(2,2).∵點A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當x=3時,∴P故選C.點睛:考查反比例函數(shù)圖象上點的坐標特征,坐標與圖形變化-平移,解題的關鍵是運用雙曲線方程求出點A的坐標,利用平移的性質求出點A1的坐標.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質等知識,解題的關鍵是學會用轉化的思想思考問題,學會利用軸對稱解決最短問題.12、3.05×105【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】305000=3.05×故答案為:3.05×10【點睛】本題考查的知識點是科學記數(shù)法—表示較大的數(shù),解題關鍵是熟記科學計數(shù)法的表示方法.13、﹣4ab【解析】

根據(jù)單項式與單項式的乘法解答即可.【詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【點睛】本題考查了單項式的乘法,關鍵是根據(jù)單項式的乘法法則解答.14、<.【解析】

根據(jù)算術平方根的定義即可求解.【詳解】解:∵=1,∴<=1,∴<1.故答案為<.【點睛】考查了算術平方根,非負數(shù)a的算術平方根a有雙重非負性:①被開方數(shù)a是非負數(shù);②算術平方根a本身是非負數(shù).15、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學,∴這個班同學年齡的中位數(shù)是第20和21個數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個班同學年齡的中位數(shù)是1歲.【點睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關鍵.16、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.17、9.2×10﹣1.【解析】

根據(jù)科學記數(shù)法的正確表示為,由題意可得0.00092用科學記數(shù)法表示是9.2×10﹣1.【詳解】根據(jù)科學記數(shù)法的正確表示形式可得:0.00092用科學記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學記數(shù)法的正確表現(xiàn)形式,解決本題的關鍵是要熟練掌握科學記數(shù)法的正確表現(xiàn)形式.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)(3)【解析】

(1)根據(jù)題中“完美矩形”的定義設出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質求出GH的長即可.【詳解】(1)在圖1中,設AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質,全等三角形的判定與性質,勾股定理,三角形中位線性質,平行線的判定與性質,熟練掌握相似三角形的性質是解本題的關鍵.19、(1),;(2)當35<x<1時,選擇B方式能節(jié)省上網(wǎng)費,見解析.【解析】

(1)根據(jù)兩種方式的收費標準,進行分類討論即可求解;

(2)當35<x<1時,計算出y1-y2的值,即可得出答案.【詳解】解:(1)由題意得:;即;;即;(2)選擇B方式能節(jié)省上網(wǎng)費當35<x<1時,有y1=3x-45,y2=1.:y1-y2=3x-45-1=3x-2.記y=3x-2因為3>4,有y隨x的增大而增大當x=35時,y=3.所以當35<x<1時,有y>3,即y>4.所以當35<x<1時,選擇B方式能節(jié)省上網(wǎng)費【點睛】此題考查了一次函數(shù)的應用,注意根據(jù)圖表得出解題需要的信息,難度一般,正確理解收費標準求出函數(shù)解析式是解題的關鍵.20、,當x=1時,原式=﹣1.【解析】

先化簡分式,然后將x的值代入計算即可.【詳解】解:原式==.且,∴x的整數(shù)有,∴取,當時,原式.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算法則是解題的關鍵.21、(1)詳見解析;(2).【解析】

(1)因為AC平分∠BCD,∠BCD=120°,根據(jù)角平分線的定義得:∠ACD=∠ACB=60°,根據(jù)同弧所對的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據(jù)三個角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對的圓周角相等,得∠BED=∠BAD=60°.根據(jù)直徑所對的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進而得到DE=2BE.設EB=x,則ED=2x,根據(jù)勾股定理列方程求解即可.【詳解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圓周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等邊三角形;(2)連接OB、OD,作OH⊥BD于H,則DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半徑為.【點睛】本題是一道圓的簡單證明題,以圓的內接四邊形為背景,圓的內接四邊形的對角互補,在圓中往往通過連結直徑構造直角三角形,再通過三角函數(shù)或勾股定理來求解線段的長度.22、(1)證明見解析(2)【解析】

(1)連接OC,根據(jù)垂直定義和切線性質定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論