版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市汽車經(jīng)濟開發(fā)區(qū)第六中學2025屆數(shù)學高一下期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.42.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形3.若向量,且,則等于()A. B. C. D.4.正項等比數(shù)列的前項和為,若,,則公比()A.4 B.3 C.2 D.15.函數(shù)的最小正周期為,則圖象的一條對稱軸方程是()A. B. C. D.6.將函數(shù)圖像上的每一個點的橫坐標縮短為原來的一半,縱坐標不變,再將所得圖像向左平移個單位得到數(shù)學函數(shù)的圖像,在圖像的所有對稱軸中,離原點最近的對稱軸為()A. B. C. D.7.已知角的終邊過點,則的值為A. B. C. D.8.下列函數(shù)中最小值為4的是()A. B.C. D.9.在正項等比數(shù)列中,,數(shù)列的前項之和為()A. B. C. D.10.設和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,若,則__________.12.若直線上存在點可作圓的兩條切線,切點為,且,則實數(shù)的取值范圍為.13.若扇形的周長是,圓心角是度,則扇形的面積(單位)是__________.14.已知一組數(shù)據(jù),,,的方差為,則這組數(shù)據(jù),,,的方差為______.15.設為數(shù)列的前項和,若,則數(shù)列的通項公式為__________.16.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列,則的前9項和_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.18.設數(shù)列滿足,;數(shù)列的前項和為,且(1)求數(shù)列和的通項公式;(2)若,求數(shù)列的前項和.19.已知數(shù)列an的前n項和為Sn,a1(1)分別求數(shù)列an(2)若對任意的n∈N*,20.(Ⅰ)已知直線過點且與直線垂直,求直線的方程;(Ⅱ)求與直線的距離為的直線方程.21.設為數(shù)列的前項和,.(1)求證:數(shù)列是等比數(shù)列;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應選A.2、A【解析】
利用平方化倍角公式和邊化角公式化簡得到,結(jié)合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運用,這一點往往容易忽略.3、B【解析】
根據(jù)坐標形式下向量的平行對應的等量關系,即可計算出的值,再根據(jù)坐標形式下向量的加法即可求解出的坐標表示.【詳解】因為且,所以,所以,所以.故選:B.【點睛】本題考查根據(jù)坐標形式下向量的平行求解參數(shù)以及向量加法的坐標運算,難度較易.已知,若則有.4、C【解析】
由及等比數(shù)列的通項公式列出關于q的方程即可得求解.【詳解】,即有,解得或,又為正項等比數(shù)列,故選:C【點睛】本題考查等比數(shù)列的通項公式及前n項和,屬于基礎題.5、D【解析】
先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對稱軸方程.【詳解】由于函數(shù)的最小正周期為,則,,令,解得.當時,函數(shù)圖象的一條對稱軸方程為.故選:D.【點睛】本題考查利用正弦型函數(shù)的周期求參數(shù),同時也考查了正弦型函數(shù)圖象對稱軸方程的計算,解題時要結(jié)合正弦函數(shù)的基本性質(zhì)來進行求解,考查運算求解能力,屬于中等題.6、A【解析】分析:根據(jù)平移變換可得,根據(jù)放縮變換可得函數(shù)的解析式,結(jié)合對稱軸方程求解即可.詳解:將函數(shù)的圖象上的每個點的橫坐標縮短為原來的一半,縱坐標不變,得到,再將所得圖象向左平移個單位得到函數(shù)的圖象,即,由,得,當時,離原點最近的對稱軸方程為,故選A.點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),屬于中檔題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標.7、B【解析】
由三角函數(shù)的廣義定義可得的值.【詳解】因為,故選B.【點睛】本題考查三角函數(shù)的概念及定義,考查基本運算能力.8、C【解析】
對于A和D選項不能保證基本不等式中的“正數(shù)”要求,對于B選項不能保證基本不等式中的“相等”要求,即可選出答案.【詳解】對于A,當時,顯然不滿足題意,故A錯誤.對于B,,,.當且僅當,即時,取得最小值.但無解,故B錯誤.對于D,當時,顯然不滿足題意,故D錯誤.對于C,,,.當且僅當,即時,取得最小值,故C正確.故選:C【點睛】本題主要考查基本不等式,熟練掌握基本不等式的步驟為解題的關鍵,屬于中檔題.9、B【解析】
根據(jù)等比數(shù)列的性質(zhì),即可解出答案?!驹斀狻抗蔬xB【點睛】本題考查等比數(shù)列的性質(zhì),同底對數(shù)的運算,屬于基礎題。10、C【解析】
根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計算出的值.【詳解】因為的值域為,所以的最大值,所以的最小值,所以.故選:C.【點睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進行分析.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等差數(shù)列廣義通項公式,將轉(zhuǎn)化為,從而求出的值,再由廣義通項公式求得.【詳解】在等差數(shù)列中,由,,得,即..故答案為:1.【點睛】本題考查等差數(shù)列廣義通項公式的運用,考查基本量法求解數(shù)列問題,屬于基礎題.12、【解析】試題分析:若,則,直線上存在點可作和的兩條切線等價于直線與圓有公共點,由圓心到直線的距離公式可得,解之可得.考點:點到直線的距離公式及直線與圓的位置關系的運用.【方法點晴】本題主要考查了點到直線的距離公式及直線與圓的位置關系的運用,涉及到圓心到直線的距離公式和不等式的求解,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及學生的推理與運算能力,本題的解答中直線上存在點可作和的兩條切線等價于直線與圓有公共點是解答的關鍵.13、16【解析】
根據(jù)已知條件可計算出扇形的半徑,然后根據(jù)面積公式即可計算出扇形的面積.【詳解】設扇形的半徑為,圓心角弧度數(shù)為,所以即,所以,所以.故答案為:.【點睛】本題考查角度與弧度的轉(zhuǎn)化以及扇形的弧長和面積公式,難度較易.扇形的弧長公式:,扇形的面積公式:.14、【解析】
利用方差的性質(zhì)直接求解.【詳解】一組數(shù)據(jù),,,的方差為5,這組數(shù)據(jù),,,的方差為:.【點睛】本題考查方差的性質(zhì)應用。若的方差為,則的方差為。15、,【解析】
令時,求出,再令時,求出的值,再檢驗的值是否符合,由此得出數(shù)列的通項公式.【詳解】當時,,當時,,不合適上式,當時,,不合適上式,因此,,.故答案為,.【點睛】本題考查利用前項和求數(shù)列的通項,考查計算能力,屬于中等題.16、117【解析】
由成等比數(shù)列求出公差,由前項公式求和.【詳解】設數(shù)列是公差為,則,由成等比數(shù)列得,解得,∴.故答案為:117.【點睛】本題考查等差數(shù)列的前項和公式,考查等比數(shù)列的性質(zhì).解題關鍵是求出數(shù)列的公差.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的數(shù)量積的坐標表示進行計算;(Ⅱ)由垂直關系,得到坐標間的等式關系,然后計算出參數(shù)的值.【詳解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量與垂直,∴∴,∴【點睛】已知,若,則有;已知,若,則有.18、(1),;(2)【解析】
(1)分別利用累加法、數(shù)列的遞推公式得到數(shù)列和數(shù)列的通項公式.(2)利用數(shù)列求和的錯位相減即可得到數(shù)列的前項和.【詳解】(1),……,,以上個式子相加得:當時,=當時,,符合上式,(2)①②①-②得【點睛】已知求數(shù)列的通項公式時,可采用累加法得到通項公式,通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式(等差等比數(shù)列相乘)的前項和采用錯位相減法.19、(1)an=3n-1【解析】
(1)設等差數(shù)列bn公差為d,則b解得d=3,bn當n≥2時,an=2Sn-1a2=2a1+1=3aan是以1為首項3為公比的等比數(shù)列,則.;(2)由(1)知,Sn原不等式可化為k≥6(n-2)若對任意的n∈N*恒成立,問題轉(zhuǎn)化為求數(shù)列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大項為第3項,c3=62720、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根據(jù)直線與直線垂直,求得直線的斜率為,再利用直線的點斜式方程,即可求解;(Ⅱ)設所求直線方程為,由點到直線的距離公式,列出方程,求得的值,即可得到答案.【詳解】(Ⅰ)由題意,設所求直線的斜率為,由直線的斜率為,因為直線與直線垂直,所以直線的斜率為,所以所求直線的方程為直線的方程為:,即.(Ⅱ)設所求直線方程為,即,直線上任取一點,由點到直線的距離公式,可得,解得或-4,所以所求直線方程為:或.【點睛】本題主要考查了直線方程的求解,兩直線的位置關系的應用,以及點到直線的距離公式的應用,著重考查了推理與運算能力,屬于基礎題.21、(1)見解析;(2)見解析.【解析】
(1)令,由求出的值,再令,由得,將兩式相減并整理得,計算出為非零常數(shù)可證明出數(shù)列為等比數(shù)列;(2)由(1)得出,可得出,利用放縮
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版智能交通解決方案合同
- 2025年粗紡混紡紗行業(yè)深度研究分析報告
- 2024-2029年中國微電聲器件行業(yè)市場研究與投資預測分析報告
- 全電子時控開關鐘行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025年度個人教育培訓貸款延期合同4篇
- 2025年山西華新燃氣集團有限公司招聘筆試參考題庫含答案解析
- 2025年山東海洋冷鏈發(fā)展有限公司招聘筆試參考題庫含答案解析
- 二零二五版門衛(wèi)勞務與城市安全服務合同4篇
- 2025年江蘇海晟控股集團有限公司招聘筆試參考題庫含答案解析
- 2025年遼寧鞍山市臺安縣城建集團招聘筆試參考題庫含答案解析
- 九年級數(shù)學上冊期末復習綜合測試題(含答案)
- 2025年月度工作日歷含農(nóng)歷節(jié)假日電子表格版
- 開展個人極端案事件防范工作總結(jié)【四篇】
- 2024中國智能駕駛城區(qū)NOA功能測評報告-2024-12-智能網(wǎng)聯(lián)
- 山西省呂梁市2023-2024學年高二上學期期末考試數(shù)學試題(解析版)
- 2024年市場運營部職責樣本(3篇)
- 2024體育活動區(qū)鋪沙子(合同)協(xié)議
- 《中華人民共和國機動車駕駛?cè)丝颇恳豢荚囶}庫》
- 《劇本寫作要素》課件
- 2024年VB程序設計:從入門到精通
- 2024年故宮文化展覽計劃:課件創(chuàng)意與呈現(xiàn)
評論
0/150
提交評論