安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁(yè)
安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁(yè)
安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁(yè)
安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁(yè)
安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省定遠(yuǎn)縣民族中學(xué)2025屆高一下數(shù)學(xué)期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)在上的圖像大致為()A. B.C. D.2.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.3.點(diǎn)、、、在同一個(gè)球的球面上,,.若四面體的體積的最大值為,則這個(gè)球的表面積為()A. B. C. D.4.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形5.如圖是某個(gè)正方體的平面展開圖,,是兩條側(cè)面對(duì)角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為6.函數(shù)的圖象如圖所示,則y的表達(dá)式為()A. B.C. D.7.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形8.如圖所示,程序框圖算法流程圖的輸出結(jié)果是A. B. C. D.9.已知x,y∈R,且x>y>0,則()A. B.C. D.lnx+lny>010.已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.15二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是定義在上以2為周期的偶函數(shù),已知,,則函數(shù)在上的解析式是12.已知曲線與直線交于A,B兩點(diǎn),若直線OA,OB的傾斜角分別為、,則__________13.在中,角所對(duì)的邊分別為,下列命題正確的是_____________.①總存在某個(gè)內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.14.已知數(shù)列為等比數(shù)列,,,則數(shù)列的公比為__________.15.實(shí)數(shù)x、y滿足,則的最大值為________.16.函數(shù),的值域是_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知為數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.18.已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足(1)求曲線的方程;(2)設(shè)曲線與軸交于兩點(diǎn),點(diǎn)是曲線上異于的任意一點(diǎn),直線分別交直線:于點(diǎn),試問(wèn)軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.已知數(shù)列的各項(xiàng)均不為零.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且,.(Ⅰ)求,的值;(Ⅱ)證明數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;(Ⅲ)證明:.20.如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).(1)證明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.21.從社會(huì)效益和經(jīng)濟(jì)效益出發(fā),某地投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè),根據(jù)規(guī)劃,本年度投入800萬(wàn)元,以后每年投入將比上年減少,本年度當(dāng)?shù)芈糜螛I(yè)收入估計(jì)為400萬(wàn)元,由于該項(xiàng)建設(shè)對(duì)旅游業(yè)的促進(jìn)作用,預(yù)計(jì)今后的旅游業(yè)收入每年會(huì)比上年增加.(1)設(shè)年內(nèi)(本年度為第一年)總投入為萬(wàn)元,旅游業(yè)總收入為萬(wàn)元,寫出的表達(dá)式;(2)至少經(jīng)過(guò)幾年,旅游業(yè)的總收入才能超過(guò)總投入?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

利用函數(shù)的奇偶性和函數(shù)圖像上的特殊點(diǎn),對(duì)選項(xiàng)進(jìn)行排除,由此得出正確選項(xiàng).【詳解】由于,所以函數(shù)為奇函數(shù),圖像關(guān)于原點(diǎn)對(duì)稱,排除C選項(xiàng).由于,所以排除D選項(xiàng).由于,所以排除B選項(xiàng).故選:A.【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查函數(shù)的奇偶性、特殊點(diǎn),屬于基礎(chǔ)題.2、D【解析】

容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點(diǎn)睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.3、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,可得與面垂直時(shí)體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點(diǎn)均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時(shí)體積最大,所以,當(dāng)與面垂直時(shí)體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,球的表面積,其中分析出何時(shí)四面體體積取最大值,是解答的關(guān)鍵.4、A【解析】

由可得四邊形為平行四邊形,由·=0得四邊形的對(duì)角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對(duì)角線互相垂直,∴平行四邊形為菱形.故選A.【點(diǎn)睛】本題考查向量相等和向量數(shù)量積的的應(yīng)用,解題的關(guān)鍵是正確理解有關(guān)的概念,屬于基礎(chǔ)題.5、D【解析】

先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點(diǎn)重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點(diǎn)睛】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.6、B【解析】

根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對(duì)應(yīng)的的值,可得周期,然后由,得到,代入點(diǎn),結(jié)合的范圍,得到答案.【詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【點(diǎn)睛】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡(jiǎn)單題.7、C【解析】

由基本不等式得出,將三個(gè)不等式相加得出,由等號(hào)成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個(gè)不等式相加得,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,是等邊三角形,故選C.【點(diǎn)睛】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.8、D【解析】

模擬程序圖框的運(yùn)行過(guò)程,得出當(dāng)時(shí),不再運(yùn)行循環(huán)體,直接輸出S值.【詳解】模擬程序圖框的運(yùn)行過(guò)程,得S=0,n=2,n<8滿足條件,進(jìn)入循環(huán):S=滿足條件,進(jìn)入循環(huán):進(jìn)入循環(huán):不滿足判斷框的條件,進(jìn)而輸出s值,該程序運(yùn)行后輸出的是計(jì)算:.故選D.【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問(wèn)題,是基礎(chǔ)題目.根據(jù)程序框圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)?②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.9、A【解析】

結(jié)合選項(xiàng)逐個(gè)分析,可選出答案.【詳解】結(jié)合x,y∈R,且x>y>0,對(duì)選項(xiàng)逐個(gè)分析:對(duì)于選項(xiàng)A,,,故A正確;對(duì)于選項(xiàng)B,取,,則,故B不正確;對(duì)于選項(xiàng)C,,故C錯(cuò)誤;對(duì)于選項(xiàng)D,,當(dāng)時(shí),,故D不正確.故選A.【點(diǎn)睛】本題考查了不等式的性質(zhì),屬于基礎(chǔ)題.10、B【解析】

已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為故選:B【點(diǎn)睛】本題主要考古典概型的概率求法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:根據(jù)題意,由于是定義在上以2為周期的偶函數(shù),那么當(dāng),,可知當(dāng)x,,那么利用周期性可知,在上的解析式就是將x,的圖像向右平移2個(gè)單位得到的,因此可知,答案為.考點(diǎn):函數(shù)奇偶性、周期性的運(yùn)用點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),即周期性,奇偶性,單調(diào)性等有關(guān)性質(zhì).12、【解析】

曲線即圓曲線的上半部分,因?yàn)閳A是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達(dá)定理與直線方程代入即可求解.【詳解】由消去得,則,由三角函數(shù)的定義得故.【點(diǎn)睛】本題主要考查三角函數(shù)的定義,直線與圓的應(yīng)用.此題關(guān)鍵在于曲線的識(shí)別與三角函數(shù)定義的應(yīng)用.13、①③【解析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個(gè)角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡(jiǎn)得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運(yùn)算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對(duì)于①中,在中,當(dāng),則,若為直角三角形,則必有一個(gè)角在內(nèi);若為銳角三角形,則必有一個(gè)內(nèi)角小于等于;若為鈍角三角形,也必有一個(gè)角小于內(nèi),所以總存在某個(gè)內(nèi)角,使得,所以是正確的;對(duì)于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對(duì)于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點(diǎn)睛】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運(yùn)算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識(shí)和向量的運(yùn)算進(jìn)行化簡(jiǎn)是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.14、【解析】

設(shè)等比數(shù)列的公比為,由可求出的值.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,數(shù)列的公比為,故答案為:.【點(diǎn)睛】本題考查等比數(shù)列公比的計(jì)算,在等比數(shù)列的問(wèn)題中,通常將數(shù)列中的項(xiàng)用首項(xiàng)和公比表示,建立方程組來(lái)求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃求最大值,屬于簡(jiǎn)單題.16、【解析】

首先根據(jù)的范圍求出的范圍,從而求出值域。【詳解】當(dāng)時(shí),,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域?yàn)楣蚀鸢笧椋海军c(diǎn)睛】本題主要考查了復(fù)合函數(shù)值域的求法:首先求出內(nèi)函數(shù)的值域再求外函數(shù)的值域。屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),【解析】

(1)利用,時(shí)單獨(dú)討論.求解.

(2)對(duì)時(shí)單獨(dú)討論,當(dāng)時(shí),對(duì)從到的和應(yīng)用錯(cuò)位相減法求和.【詳解】當(dāng)時(shí),,得.當(dāng)時(shí),即.所以數(shù)列是以3為首項(xiàng),3為公比的等比數(shù)列.所以(2)設(shè),則..當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),設(shè)………………由﹣得所以所以綜上所述:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),【點(diǎn)睛】本題考查應(yīng)用求通項(xiàng)公式和應(yīng)用錯(cuò)位相減法求前項(xiàng)和,考查計(jì)算能力,屬于難題.18、(1);(2)存在點(diǎn)使得成立.【解析】

(1)設(shè)P(x,y),由|PA|=2|PB|,得=2,由此能求出曲線的方程.(2)由題意得M(0,1),N(0,-1),設(shè)點(diǎn)R(x0,y0),(x0≠0),由點(diǎn)R在曲線上,得=1,直線RM的方程,從而直線RM與直線y=3的交點(diǎn)為,直線RN的方程為,從而直線RN與直線y=3的交點(diǎn)為,假設(shè)存在點(diǎn)S(0,m),使得成立,則,由此能求出存在點(diǎn)S,使得成立,且S點(diǎn)的坐標(biāo)為.【詳解】(1)設(shè),由,得:,整理得.所以曲線的方程為.(2)由題意得,,.設(shè)點(diǎn),由點(diǎn)在曲線上,所以.直線的方程為,所以直線與直線的交點(diǎn)為.直線的方程為所以直線與直線的交點(diǎn)為.假設(shè)存在點(diǎn),使得成立,則,.即,整理得.因?yàn)?,所以,解?所以存在點(diǎn)使得成立,且點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查曲線方程的求法,考查是否存在滿足向量積為0的點(diǎn)的判斷與求法,考查圓、直線方程、向量的數(shù)量積公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.19、(Ⅰ)2,4;(Ⅱ)證明見解析,;(Ⅲ)證明見解析.【解析】

(Ⅰ)直接給n賦值求出,的值;(Ⅱ)利用項(xiàng)和公式化簡(jiǎn),再利用定義法證明數(shù)列是等比數(shù)列,即得等比數(shù)列的通項(xiàng)公式;(Ⅲ)由(Ⅱ)知,再利用等比數(shù)列求和證明不等式.【詳解】(Ⅰ),令,得,,;令,得,即,,.證明:(Ⅱ),①,②②①得:,,,從而當(dāng)時(shí),,④③④得:,即,,.又由(Ⅰ)知,,,.?dāng)?shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,則.(Ⅲ)由(Ⅱ)知,因?yàn)楫?dāng)時(shí),,所以.于是.【點(diǎn)睛】本題主要考查等比數(shù)列性質(zhì)的證明和通項(xiàng)的求法,考查等比數(shù)列求和和放縮法證明不等式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.20、(1)見解析;(2).【解析】

(1)利用三角形中位線和可證得,證得四邊形為平行四邊形,進(jìn)而證得,根據(jù)線面平行判定定理可證得結(jié)論;(2)以菱形對(duì)角線交點(diǎn)為原點(diǎn)可建立空間直角坐標(biāo)系,通過(guò)取中點(diǎn),可證得平面,得到平面的法向量;再通過(guò)向量法求得平面的法向量,利用向量夾角公式求得兩個(gè)法向量夾角的余弦值,進(jìn)而可求得所求二面角的正弦值.【詳解】(1)連接,,分別為,中點(diǎn)為的中位線且又為中點(diǎn),且且四邊形為平行四邊形,又平面,平面平面(2)設(shè),由直四棱柱性質(zhì)可知:平面四邊形為菱形則以為原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系:則:,,,D(0,-1,0)取中點(diǎn),連接,則四邊形為菱形且為等邊三角形又平面,平面平面,即平面為平面的一個(gè)法向量,且設(shè)平面的法向量,又,,令,則,二面角的正弦值為:【點(diǎn)睛】本題考查線面平行關(guān)系的證明、空間向量法求解二面角的問(wèn)題.求解二面角的關(guān)鍵是能

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論