版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶一中重點中學(xué)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.42.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.33.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.324.﹣2018的絕對值是()A.±2018 B.﹣2018 C.﹣ D.20185.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.6.一小組8位同學(xué)一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1687.如圖所示,在方格紙上建立的平面直角坐標(biāo)系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標(biāo)為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)8.若,則()A. B. C. D.9.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變10.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______.12.計算:×(﹣2)=___________.13.將一個含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點順時針旋轉(zhuǎn)75°,點的對應(yīng)點恰好落在軸上,若點的坐標(biāo)為,則點的坐標(biāo)為____________.14.64的立方根是_______.15.如圖,若點的坐標(biāo)為,則=________.16.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關(guān),初日健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意是:有人要去某關(guān)口,路程為378里,第一天健步行走,從第二天起,由于腳痛,每天走的路程都為前一天的一半,一共走了六天才到達(dá)目的地.求此人第六天走的路程為多少里.設(shè)此人第六天走的路程為x里,依題意,可列方程為________.三、解答題(共8題,共72分)17.(8分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時,求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時,求x的值.18.(8分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當(dāng)∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.19.(8分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機準(zhǔn)備生產(chǎn)空氣凈化設(shè)備,該企業(yè)決定從以下兩個投資方案中選擇一個進(jìn)行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價為80元,每件產(chǎn)品銷售價為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時需上交0.5x2萬元的特別關(guān)稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應(yīng)生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?20.(8分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.21.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時,求點P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.22.(10分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)23.(12分)為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.24.如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進(jìn)而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當(dāng)x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當(dāng)y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識,正確得出A點坐標(biāo)是解題關(guān)鍵.2、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.3、B【解析】
根據(jù)題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.4、D【解析】分析:根據(jù)絕對值的定義解答即可,數(shù)軸上,表示一個數(shù)a的點到原點的距離叫做這個數(shù)的絕對值.詳解:﹣2018的絕對值是2018,即.故選D.點睛:本題考查了絕對值的定義,熟練掌握絕對值的定義是解答本題的關(guān)鍵,正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.5、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長度是本題的關(guān)鍵.6、C【解析】
先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).7、D【解析】
解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標(biāo)為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標(biāo)為(1,3).故選D.8、D【解析】
等式左邊為非負(fù)數(shù),說明右邊,由此可得b的取值范圍.【詳解】解:,
,解得故選D.【點睛】本題考查了二次根式的性質(zhì):,.9、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數(shù)以及每列正方形的個數(shù)是解決本題的關(guān)鍵.10、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點之間線段最短及軸對稱添加輔助線是解題的關(guān)鍵.12、-1【解析】
根據(jù)“兩數(shù)相乘,異號得負(fù),并把絕對值相乘”即可求出結(jié)論.【詳解】故答案為【點睛】本題考查了有理數(shù)的乘法,牢記“兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘”是解題的關(guān)鍵.13、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵點C的坐標(biāo)為(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′點的坐標(biāo)為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長度,即可解決問題.14、4.【解析】
根據(jù)立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4【點睛】此題主要考查立方根的定義,解題的關(guān)鍵是熟知立方根的定義.15、【解析】
根據(jù)勾股定理,可得OA的長,根據(jù)正弦是對邊比斜邊,可得答案.【詳解】如圖,由勾股定理,得:OA==1.sin∠1=,故答案為.16、;【解析】
設(shè)第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,根據(jù)總路程為378里列出方程可得答案.【詳解】解:設(shè)第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,依題意得:,故答案:.【點睛】本題主要考查由實際問題抽象出一元一次方程.三、解答題(共8題,共72分)17、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進(jìn)而判斷出△OAC≌△BAM,即可得出結(jié)論;(2)先判斷出BD=DM,進(jìn)而得出,進(jìn)而得出AE=,再判斷出,即可得出結(jié)論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結(jié)論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當(dāng)OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當(dāng)AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當(dāng)CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當(dāng)△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關(guān)性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關(guān)于x的函數(shù)關(guān)系式是解答本題的關(guān)鍵.18、(1)證明見解析;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質(zhì)得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應(yīng)角相等即可;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進(jìn)行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質(zhì)及圓周角定理的知識,解題的關(guān)鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.19、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-125a(萬元),10(萬元);(3)當(dāng)40<a<80時,選擇方案一;當(dāng)a=80時,選擇方案一或方案二均可;當(dāng)80<a<100時,選擇方案二.【解析】
(1)根據(jù)題意直接得出y1與y2與x的函數(shù)關(guān)系式即可;(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因為﹣0.5<0,可求出y2的最大值;(3)第三問要分兩種情況決定選擇方案一還是方案二.當(dāng)2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數(shù)),y2=100x﹣0.5x2(1≤x≤120,x為正整數(shù));(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當(dāng)x=125時,y1最大值=(120﹣a)×125=110﹣125a(萬元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時,y2最大值=10(萬元);(3)∵由110﹣125a>10,∴a<80,∴當(dāng)40<a<80時,選擇方案一;由110﹣125a=10,得a=80,∴當(dāng)a=80時,選擇方案一或方案二均可;由110﹣125a<10,得a>80,∴當(dāng)80<a<100時,選擇方案二.考點:二次函數(shù)的應(yīng)用.20、(1)(2)(3)【解析】
(1)(2)觀察知,找等號后面的式子規(guī)律是關(guān)鍵:分子不變,為1;分母是兩個連續(xù)奇數(shù)的乘積,它們與式子序號之間的關(guān)系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.21、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時,點P的坐標(biāo)為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標(biāo)及A點坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標(biāo)即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當(dāng)點P與點D重合時,PA+PC=AC;當(dāng)點P不與點D重合時,PA+PC>AC;∴當(dāng)點P與點D重合時,PO+PC的值最小,設(shè)直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當(dāng)x=2時,,∴當(dāng)PO+PC的值最小時,點P的坐標(biāo)為(2,);(3)存在.①AC為對角線,當(dāng)四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當(dāng)四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標(biāo)為6,當(dāng)x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當(dāng)四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標(biāo)為?2,當(dāng)x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.22、見解析【解析】
作∠AOB的角平分線和線段MN的垂直平分線,它們的交點即是要求作的點P.【詳解】解:①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GH交OE于點P.點P即為所求.【點睛】本題考查了角平分線和線段垂直平分線的尺規(guī)作法,熟練掌握角平分線和線段垂直平分線的的作圖步驟是解答本題的關(guān)鍵.23、(1)平均數(shù)為800升,中位數(shù)為800升;(2)12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年百色貨運資格證安檢考試題
- 2025年度私人車輛抵押汽車抵押權(quán)設(shè)立合同
- 2025年度版勞務(wù)協(xié)議兼職合同-航空客運服務(wù)合作協(xié)議
- 2025年度私人房產(chǎn)使用權(quán)轉(zhuǎn)讓及社區(qū)智慧家居系統(tǒng)開發(fā)合同
- 2025年度黃金質(zhì)押貸款金融服務(wù)合同
- 2025年度肉類產(chǎn)品進(jìn)出口關(guān)稅減免申請代理合同
- 2025年度私人土地租賃合同范本:鄉(xiāng)村旅游用地合作書
- 2025年度汽車融資租賃合同書
- 2025年度文化創(chuàng)意產(chǎn)業(yè)實習(xí)解除合同協(xié)議
- 2025年度黃金現(xiàn)貨買賣及虛擬貨幣交易服務(wù)合同
- 蛋糕店服務(wù)員勞動合同
- 土地買賣合同參考模板
- 2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題一-微專題10-同構(gòu)函數(shù)問題-專項訓(xùn)練【含答案】
- 2025年天津市政建設(shè)集團招聘筆試參考題庫含答案解析
- 2024-2030年中國烘焙食品行業(yè)運營效益及營銷前景預(yù)測報告
- 寧德時代筆試題庫
- 康復(fù)醫(yī)院患者隱私保護管理制度
- 公司安全事故隱患內(nèi)部舉報、報告獎勵制度
- 沈陽理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 共享單車安全知識
- 北京三甲中醫(yī)疼痛科合作方案
評論
0/150
提交評論