版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省長沙市雨花區(qū)南雅中學高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,若,,,則()A. B. C. D.2.如圖,B是AC上一點,分別以AB,BC,AC為直徑作半圓,從B作BD⊥AC,與半圓相交于D,AC=6,BD=22A.29 B.13 C.43.已知,函數(shù)的最小值是()A.4 B.5 C.8 D.64.已知x?y的取值如下表:x0134y2.24.34.86.7從散點圖可以看出y與x線性相關,且回歸方程,則當時,估計y的值為()A.7.1 B.7.35 C.7.95 D.8.65.已知函數(shù),當時,取得最小值,則等于()A.9 B.7 C.5 D.36.已知,則的垂直平分線所在直線方程為()A. B.C. D.7.在區(qū)間上隨機選取一個數(shù),則的概率為()A. B. C. D.8.一個扇形的弧長與面積都是3,則這個扇形圓心角的弧度數(shù)為()A. B. C. D.9.已知三個內角、、的對邊分別是,若,則等于()A. B. C. D.10.同時擲兩枚骰子,則向上的點數(shù)相等的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知一組數(shù)1,2,m,6,7的平均數(shù)為4,則這組數(shù)的方差為______.12.若數(shù)列滿足,則_____.13.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.14.函數(shù)的最小正周期___________.15.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.16.已知函數(shù)那么的值為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某工廠新研發(fā)了一種產品,該產品每件成本為5元,將該產品按事先擬定的價格進行銷售,得到如下數(shù)據(jù):單價(元)88.28.48.68.89銷量(件)908483807568(1)求銷量(件)關于單價(元)的線性回歸方程;(2)若單價定為10元,估計銷量為多少件;(3)根據(jù)銷量關于單價的線性回歸方程,要使利潤最大,應將價格定為多少?參考公式:,.參考數(shù)據(jù):,18.從兩個班中各隨機抽取10名學生,他們的數(shù)學成績如下,通過作莖葉圖,分析哪個班學生的數(shù)學學習情況更好一些.甲班76748296667678725268乙班8684627678928274888519.在一個盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.20.如圖,是邊長為2的正三角形.若,平面,平面平面,,且.(1)求證:平面;(2)求證:平面平面.21.如圖1所示,在四邊形中,,且,,.(1)求的面積;(2)若,求的長.圖1圖2
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由正弦定理構造方程即可求得結果.【詳解】由正弦定理得:本題正確選項:【點睛】本題考查正弦定理解三角形的問題,屬于基礎題.2、C【解析】
求得陰影部分的面積和最大的半圓的面積,再根據(jù)面積型幾何概型的概率計算公式求解.【詳解】連接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),則有8=x(6-x),得x=2,所以AB=2,?BC=4,由此可得圖中陰影部分的面積等于π×3【點睛】本題考查了與面積有關的幾何概型的概率的求法,當試驗結果所構成的區(qū)域可用面積表示,用面積比計算概率.涉及了初中學習的射影定理,也可通過證明相似,求解各線段的長.3、A【解析】試題分析:由題意可得,滿足運用基本不等式的條件——一正,二定,三相等,所以,故選A考點:利用基本不等式求最值;4、B【解析】
計算,,代入回歸方程計算得到,再計算得到答案.【詳解】,,故,解得.當,.故選:【點睛】本題考查了回歸方程的應用,意在考查學生的計算能力.5、B【解析】
先對函數(shù)進行配湊,使得能夠使用均值不等式,再利用均值不等式,求得結果.【詳解】因為故當且僅當,即時,取得最小值.故,則.故選:B.【點睛】本題考查均值不等式的使用,屬基礎題;需要注意均值不等式使用的條件.6、A【解析】
首先根據(jù)題中所給的兩個點的坐標,應用中點坐標公式求得線段的中點坐標,利用兩點斜率坐標公式求得,利用兩直線垂直時斜率的關系,求得其垂直平分線的斜率,利用點斜式寫出直線的方程,化簡求得結果.【詳解】因為,所以其中點坐標是,又,所以的垂直平分線所在直線方程為,即,故選A.【點睛】該題考查的是有關線段的垂直平分線的方程的問題,在解題的過程中,需要明確線段的垂直平分線的關鍵點一是垂直,二是平分,利用相關公式求得結果.7、C【解析】
根據(jù)幾何概型概率公式直接求解可得結果.【詳解】由幾何概型概率公式可知,所求概率本題正確選項:【點睛】本題考查幾何概型中的長度型概率問題的求解,屬于基礎題.8、B【解析】
根據(jù)扇形的弧長與面積公式,代入已知條件即可求解.【詳解】設扇形的弧長為,面積為,半徑為,圓心角弧度數(shù)為由定義可得,代入解得rad故選:B【點睛】本題考查了扇形的弧長與面積公式應用,屬于基礎題.9、D【解析】
根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應用,注意增根的排除.10、D【解析】
利用古典概型的概率公式即可求解.【詳解】同時擲兩枚骰子共有種情況,其中向上點數(shù)相同的有種情況,其概率為.故選:D【點睛】本題考查了古典概型的概率計算公式,解題的關鍵是找出基本事件個數(shù),屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先根據(jù)平均數(shù)計算出的值,再根據(jù)方差的計算公式計算出這組數(shù)的方差.【詳解】依題意.所以方差為.故答案為:.【點睛】本小題主要考查平均數(shù)和方差的有關計算,考查運算求解能力,屬于基礎題.12、【解析】
由遞推公式逐步求出.【詳解】.故答案為:【點睛】本題考查數(shù)列的遞推公式,屬于基礎題.13、【解析】
利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【詳解】設各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【點睛】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】
利用兩角和的正弦公式化簡函數(shù)表達式,由此求得函數(shù)的最小正周期.【詳解】依題意,故函數(shù)的周期.故填:.【點睛】本小題主要考查兩角和的正弦公式,考查三角函數(shù)最小正周期的求法,屬于基礎題.15、【解析】
設三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結果.【詳解】由正弦定理可得,的外接圓直徑為,,設三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結論的應用.16、【解析】試題分析:因為函數(shù)所以==.考點:本題主要考查分段函數(shù)的概念,計算三角函數(shù)值.點評:基礎題,理解分段函數(shù)的概念,代入計算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)當銷售單價定為10元時,銷量為50件(3)要使利潤達到最大,應將價格定位8.75元.【解析】
(1)由均值公式求得均值,,再根據(jù)給定公式計算回歸系數(shù),得回歸方程;(2)在(1)的回歸方程中令,求得值即可;(3)由利潤可化為的二次函數(shù),由二次函數(shù)知識可得利潤最大值及此時的值.【詳解】(1)由題意可得,,則,從而,故所求回歸直線方程為.(2)當時,,故當銷售單價定為10元時,銷量為50件.(3)由題意可得,,.故要使利潤達到最大,應將價格定位8.75元.【點睛】本題考查線性回歸直線方程,解題時只要根據(jù)已知公式計算,計算能力是正確解答本題的基礎.18、莖葉圖見解析,乙班【解析】
根據(jù)表中數(shù)據(jù)作出莖葉圖,再依據(jù)莖葉圖進行分析.【詳解】根據(jù)表中數(shù)據(jù),作出莖葉圖如下:從這個莖葉圖中可以看出,甲班成績集中在70分左右,而乙班成績集中在80左右,故乙班的數(shù)學成績更好一些.【點睛】本題考查畫莖葉圖,也考查莖葉圖的應用,屬于基礎題.19、(1);(2);(3).【解析】
(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【點睛】本題考查古典概型及其概率計算公式,考查邏輯思維能力和運算能力,屬于??碱}.20、(1)見解析;(2)見解析【解析】
(1)取的中點,連接,由平面平面,得平面,再證即可證明(2)證明平面,再根據(jù)面面垂直的判定定理從而進行證明.【詳解】(1)取的中點,連接,因為,且,.所以,.又因為平面平面,所以平面,又平面,所以又因為平面,平面,所以平面.(2)連接,由(1)知,又,,所以四邊形是平行四邊形,所以.又是正三角形,為的中點,∴,因為平面平面,所以平面,所以平面.又平面,所以.因為,,所以平面.因為平面,所以平面平面.【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育娛樂保安工作總結
- 航空行業(yè)安全飛行操作
- 腫瘤科護士關懷療養(yǎng)
- 酒店管理工作問題解決途徑
- 藝術活動對學生綜合素質的影響計劃
- 期刊名稱(中英文及所寫對照)
- 神經(jīng)電生理室護理工作總結
- 2024年物業(yè)服務合同(集合篇)
- 2024年設備檔案管理制度
- 2024年經(jīng)典招商代理合同(35篇)
- DPP-4抑制劑的臨床應用及優(yōu)勢解析課件
- 《起重吊裝方案編制》課件
- 光伏扶貧項目可行性研究報告
- 鈑金沖壓件質量要求
- 2022年高考全國甲卷語文試題評講課件55張
- 欠條(標準模版)
- 8.臺球助教速成培訓手冊0.9萬字
- 深圳京基·KKmall市場考察報告(45頁
- 國家開放大學電大本科《西方社會學》2023-2024期末試題及答案(試卷代號:1296)
- JBT5323-91立體倉庫焊接式鋼結構貨架 技術條件
- 60m3臥式液化石油氣儲罐設計
評論
0/150
提交評論