




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
平?jīng)鍪兄攸c中學(xué)2025屆數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.82.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.223.下列表達(dá)式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④4.設(shè),,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于25.若,,則()A. B. C. D.6.若角的終邊與單位圓交于點,則()A. B. C. D.不存在7.“是第二象限角”是“是鈍角”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要8.?dāng)?shù)列的通項公式,其前項和為,則等于()A. B. C. D.9.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.10.在復(fù)平面內(nèi),復(fù)數(shù)滿足,則的共軛復(fù)數(shù)對應(yīng)的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.若在區(qū)間(且)上至少含有30個零點,則的最小值為_____.12.已知正方體中,,分別為,的中點,那么異面直線與所成角的余弦值為______.13.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.14.中,三邊所對的角分別為,若,則角______.15.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.16.在各項均為正數(shù)的等比數(shù)列中,,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.中,角A,B,C所對邊分別是a、b、c,且.(1)求的值;(2)若,求面積的最大值.18.如圖,平行四邊形中,是的中點,交于點.設(shè),.(1)分別用,表示向量,;(2)若,,求.19.已知以點為圓心的圓C被直線截得的弦長為.(1)求圓C的標(biāo)準(zhǔn)方程:(2)求過與圓C相切的直線方程:(3)若Q是直線上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出恒過點坐標(biāo):若不是,說明理由.20.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標(biāo);(2)若方程的根為,且,求的值.21.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè);試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當(dāng)m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).2、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學(xué)生的計算能力.3、D【解析】
根據(jù)基本不等式、不等式的性質(zhì)即可【詳解】對于①,.當(dāng),即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。4、D【解析】
由題意得,當(dāng)且僅當(dāng)時,等號成立,所以至少有一個不小于,故選D.5、D【解析】
由于,,,,利用“平方關(guān)系”可得,,變形即可得出.【詳解】∵,,∴,∴.∵,∴,∵,∴.∴.故選D.【點睛】本題考查了兩角和的余弦公式、三角函數(shù)同角基本關(guān)系式、拆分角等基礎(chǔ)知識與基本技能方法,屬于中檔題.6、B【解析】
由三角函數(shù)的定義可得:,得解.【詳解】解:在單位圓中,,故選B.【點睛】本題考查了三角函數(shù)的定義,屬基礎(chǔ)題.7、B【解析】
由α是鈍角可得α是第二象限角,反之不成立,則答案可求.【詳解】若α是鈍角,則α是第二象限角;反之,若α是第二象限角,α不一定是鈍角,如α=﹣210°.∴“α是第二象限角”是“α是鈍角”的必要非充分條件.故選B.【點睛】本題考查鈍角、象限角的概念,考查了充分必要條件的判斷方法,是基礎(chǔ)題.8、B【解析】
依據(jù)為周期函數(shù),得到,并項求和,即可求出的值?!驹斀狻恳驗闉橹芷诤瘮?shù),周期為4,所以,,故選B?!军c睛】本題主要考查數(shù)列求和方法——并項求和法的應(yīng)用,以及三角函數(shù)的周期性,分論討論思想,意在考查學(xué)生的推理論證和計算能力。9、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進(jìn)行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.10、A【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由共軛復(fù)數(shù)的概念得答案.【詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復(fù)數(shù)對應(yīng)的點的坐標(biāo)為(1,﹣1),位于第四象限.故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先求出在上的兩個零點,再根據(jù)周期性算出至少含有30個零點時的值即可【詳解】根據(jù),即,故,或,∵在區(qū)間(且)上至少含有30個零點,∴不妨假設(shè)(此時,),則此時的最小值為,(此時,),∴的最小值為,故答案為:【點睛】本題函數(shù)零點個數(shù)的判斷,解決此類問題通常結(jié)合周期、函數(shù)圖形進(jìn)行解決。屬于難題。12、【解析】
異面直線所成角,一般平移到同一個平面求解.【詳解】連接DF,異面直線與所成角等于【點睛】異面直線所成角,一般平移到同一個平面求解.不能平移時通??紤]建系,利用向量解決問題.13、4【解析】
由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運(yùn)用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準(zhǔn)確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.14、【解析】
利用余弦定理化簡已知條件,求得的值,進(jìn)而求得的大小.【詳解】由得,由于,所以.【點睛】本小題主要考查余弦定理解三角形,考查特殊角的三角函數(shù)值,屬于基礎(chǔ)題.15、【解析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【點睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16、8【解析】
根據(jù)題中數(shù)列,結(jié)合等比數(shù)列的性質(zhì),得到,即可得出結(jié)果.【詳解】因為數(shù)列為各項均為正數(shù)的等比數(shù)列,,,所以.故答案為【點睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,熟記等比數(shù)列的性質(zhì)即可,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)將化簡代入數(shù)據(jù)得到答案.(2)利用余弦定理和均值不等式計算,代入面積公式得到答案.【詳解】;(2)由,可得,由余弦定理可得,即有,當(dāng)且僅當(dāng),取得等號.則面積為.即有時,的面積取得最大值.【點睛】本題考查了三角恒等變換,余弦定理,面積公式,均值不等式,屬于常考題型.18、(1),(2)2【解析】
(1)由平面的加法可得,又根據(jù)三角形相似得到,再根據(jù)向量的減法可得的不等式.
(2)由平面向量數(shù)量積運(yùn)算得,然后再將條件代入可得答案.【詳解】(1).由∽,又所以,即(2)由,【點睛】本題考查了平面向量的線性運(yùn)算及平面向量數(shù)量積運(yùn)算,屬中檔題.19、(1)(2)或(3)直線RS恒過定點【解析】
(1)由弦長可得,進(jìn)而求解即可;(2)分別討論直線的斜率存在與不存在的情況,再利用圓心到直線距離等于半徑求解即可;(3)由QR,QS分別切圓C于R,S兩點,可知,在以為直徑的圓上,設(shè)為,則可得到以為直徑的圓的方程,與圓聯(lián)立可得,由求解即可【詳解】(1)由題,設(shè)點到直線的距離為,則,則弦長,解得,所以圓的標(biāo)準(zhǔn)方程為:(2)當(dāng)切線斜率不存在時,直線方程為,圓心到直線距離為2,故此時相切;當(dāng)切線斜率存在時,設(shè)切線方程為,即,則,解得,則直線方程為,即,綜上,切線方程為或(3)直線RS恒過定點,由題,,則,在以為直徑的圓上,設(shè)為,則以為直徑的圓的方程為:,整理可得,與圓:聯(lián)立可得:,即,令,解得,故無論取何值時,直線恒過定點【點睛】本題考查圓的方程,考查已知圓外一點求切線方程,考查直線恒過定點問題20、(1)最小正周期為.對稱中心坐標(biāo)為;(2)-1【解析】
(1)由題意兩未知數(shù)列兩方程即可求出、的值,再進(jìn)行三角變換,可得的解析式,再利用正弦函數(shù)的周期公式、圖象的對稱性,即可得出結(jié)論.(2)先由條件求得的值,可得的值.【詳解】(1)由,得:,解得:,,,即函數(shù)的最小正周期為.由得:函數(shù)的對稱中心坐標(biāo)為;(2)由題意得:,即,或,則或,由知:,.【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性、圖象的對稱性,以及三角函數(shù)求值.21、方式一最大值【解析】
試題分析:(1)運(yùn)用公式時要注意審查公式成立的條件,要注意和差、倍角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下語文數(shù)學(xué)試卷
- 高難度劇本殺數(shù)學(xué)試卷
- 肛腸科中醫(yī)課件
- 光山縣招教試題數(shù)學(xué)試卷
- 肉雞生物安全課件
- 飛線充電培訓(xùn)課件
- 2024年10月遼寧2024撫順縣農(nóng)村信用合作聯(lián)社校園招考筆試歷年參考題庫附帶答案詳解
- 超聲骨密度培訓(xùn)課件
- 四川南充臨江建設(shè)發(fā)展集團(tuán)有限責(zé)任公司員工招聘考試真題2024
- 2024年眉山職業(yè)技術(shù)學(xué)院招聘筆試真題
- 福建廈門雙十中學(xué)2024~2025學(xué)年高一下冊第一次月考數(shù)學(xué)試題
- 2024年四川省甘孜縣林業(yè)局公開招聘試題帶答案詳解
- 中醫(yī)推拿知識培訓(xùn)課件
- 天津市和平區(qū)二十一中2025年英語七年級第二學(xué)期期末考試試題含答案
- 2025-2030中國轉(zhuǎn)輪除濕機(jī)行業(yè)前景動態(tài)及投資規(guī)劃分析報告
- 2025年河南省中考道德與法治真題含答案
- 2025年人教版小學(xué)五年級語文(下冊)期末試卷附答案
- 中國人民警察學(xué)院面試內(nèi)容與回答
- 【艾瑞咨詢】2024年中國健康管理行業(yè)研究報告494mb
- 2025年事業(yè)單位公開招聘考試《綜合應(yīng)用能力(E類)西醫(yī)臨床》新版真題卷(附詳細(xì)解析)
- 2023-2024學(xué)年福建省廈門市高二下學(xué)期期末質(zhì)量檢測數(shù)學(xué)試題(解析版)
評論
0/150
提交評論