廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第1頁
廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第2頁
廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第3頁
廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第4頁
廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省深圳七校聯(lián)考2023-2024學(xué)年中考一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-62.某校九年級(jí)“詩歌大會(huì)”比賽中,各班代表隊(duì)得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊(duì)得分的中位數(shù)是(

)A.9分B.8分C.7分D.6分3.通州區(qū)大運(yùn)河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1044.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形5.如圖,三棱柱ABC﹣A1B1C1的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,且側(cè)棱AA1⊥底面ABC,其正(主)視圖是邊長(zhǎng)為2的正方形,則此三棱柱側(cè)(左)視圖的面積為()A. B. C. D.46.如圖所示,在長(zhǎng)為8cm,寬為6cm的矩形中,截去一個(gè)矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm27.主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險(xiǎn)已經(jīng)覆蓋1350000000人.將1350000000用科學(xué)記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10148.若數(shù)a使關(guān)于x的不等式組有解且所有解都是2x+6>0的解,且使關(guān)于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個(gè)數(shù)是()A.5 B.4 C.3 D.29.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°10.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或011.如圖所示,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:312.如圖,在平面直角坐標(biāo)系中,半徑為2的圓P的圓心P的坐標(biāo)為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或5二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,正方形ABCD邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫序號(hào))14.如圖,線段AB兩端點(diǎn)坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點(diǎn)坐標(biāo)分別為C(5,3)、D(3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可得到另一條線段,請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)________.15.如圖,已知拋物線與坐標(biāo)軸分別交于A,B,C三點(diǎn),在拋物線上找到一點(diǎn)D,使得∠DCB=∠ACO,則D點(diǎn)坐標(biāo)為____________________.16.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.17.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________18.一個(gè)凸多邊形的內(nèi)角和與外角和相等,它是______邊形.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).20.(6分)如圖所示,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)的圖象與x軸交于、B兩點(diǎn),與y軸交于點(diǎn)C;(1)求c與b的函數(shù)關(guān)系式;(2)點(diǎn)D為拋物線頂點(diǎn),作拋物線對(duì)稱軸DE交x軸于點(diǎn)E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點(diǎn)P為第四象限拋物線上一點(diǎn),過P作DE的垂線交拋物線于點(diǎn)M,交DE于H,點(diǎn)Q為第三象限拋物線上一點(diǎn),作于N,連接MN,且,當(dāng)時(shí),連接PC,求的值.21.(6分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點(diǎn).(1)求拋物線的解析式;(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).22.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫出△PMN面積的最大值.23.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長(zhǎng)度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑.24.(10分)主題班會(huì)上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達(dá)成以下四個(gè)觀點(diǎn):A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競(jìng)爭(zhēng),合作雙贏.要求每人選取其中一個(gè)觀點(diǎn)寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:觀點(diǎn)頻數(shù)頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學(xué)生共有人;表中a=,b=;(2)在扇形統(tǒng)計(jì)圖中,求D所在扇形的圓心角的度數(shù);(3)現(xiàn)準(zhǔn)備從A,B,C,D四個(gè)觀點(diǎn)中任選兩個(gè)作為演講主題,請(qǐng)用列表或畫樹狀圖的方法求選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率.25.(10分)在平面直角坐標(biāo)系xOy中,點(diǎn)C是二次函數(shù)y=mx2+4mx+4m+1的圖象的頂點(diǎn),一次函數(shù)y=x+4的圖象與x軸、y軸分別交于點(diǎn)A、B.(1)請(qǐng)你求出點(diǎn)A、B、C的坐標(biāo);(2)若二次函數(shù)y=mx2+4mx+4m+1與線段AB恰有一個(gè)公共點(diǎn),求m的取值范圍.26.(12分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)E,BD⊥CE于點(diǎn)D,連接DO交BC于點(diǎn)M.(1)求證:BC平分∠DBA;(2)若,求的值.27.(12分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

先根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則,將(x-2)(x+3)展開,再根據(jù)兩個(gè)多項(xiàng)式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,

又∵(x-2)(x+3)=x2+px+q,

∴x2+px+q=x2+x-1,

∴p=1,q=-1.

故選:B.【點(diǎn)睛】本題主要考查多項(xiàng)式乘以多項(xiàng)式的法則及兩個(gè)多項(xiàng)式相等的條件.多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.兩個(gè)多項(xiàng)式相等時(shí),它們同類項(xiàng)的系數(shù)對(duì)應(yīng)相等.2、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個(gè),故處于最中間位置的數(shù)就是第四個(gè),從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點(diǎn)睛:本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、D【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:10700=1.07×104,

故選:D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯(cuò)誤.

故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.5、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側(cè)棱長(zhǎng),把相關(guān)數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長(zhǎng)為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(cè)(左)視圖的面積為2×,故選B.點(diǎn)睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關(guān)鍵是得到求左視圖的面積的等量關(guān)系,難點(diǎn)是得到側(cè)面積的寬度.6、B【解析】

根據(jù)題意,剩下矩形與原矩形相似,利用相似形的對(duì)應(yīng)邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設(shè)DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點(diǎn)睛】本題就是考查相似形的對(duì)應(yīng)邊的比相等,分清矩形的對(duì)應(yīng)邊是解決本題的關(guān)鍵.7、B【解析】

科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】將1350000000用科學(xué)記數(shù)法表示為:1350000000=1.35×109,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值及n的值.8、D【解析】

由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個(gè),故選:D.【點(diǎn)睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、C【解析】

先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.10、A【解析】

把x=﹣1代入方程計(jì)算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點(diǎn)睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.11、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對(duì)邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點(diǎn)睛】本題考查的是圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.12、D【解析】

分圓P在y軸的左側(cè)與y軸相切、圓P在y軸的右側(cè)與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當(dāng)圓P在y軸的左側(cè)與y軸相切時(shí),平移的距離為3-2=1,當(dāng)圓P在y軸的右側(cè)與y軸相切時(shí),平移的距離為3+2=5,故選D.【點(diǎn)睛】本題考查的是切線的判定、坐標(biāo)與圖形的變化-平移問題,掌握切線的判定定理是解題的關(guān)鍵,解答時(shí),注意分情況討論思想的應(yīng)用.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①②④【解析】

①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;

②連接AQ,如圖4,根據(jù)勾股定理可求出BP.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到的值;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求出QH,從而可求出S△DPQ的值;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運(yùn)用三角函數(shù)的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求得BQ=,則PQ=,∴.故②正確;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求得QH=,∴S△DPQ=DP?QH=××=.故③錯(cuò)誤;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題主要考查了圓周角定理、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線分線段成比例、等腰三角形的性質(zhì)、平行線的性質(zhì)、銳角三角函數(shù)的定義、勾股定理等知識(shí),綜合性比較強(qiáng),常用相似三角形的性質(zhì)、勾股定理、三角函數(shù)的定義來建立等量關(guān)系,應(yīng)靈活運(yùn)用.14、或【解析】

分點(diǎn)A的對(duì)應(yīng)點(diǎn)為C或D兩種情況考慮:當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C時(shí),連接AC、BD,分別作線段AC、BD的垂直平分線交于點(diǎn)E,點(diǎn)E即為旋轉(zhuǎn)中心;當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D時(shí),連接AD、BC,分別作線段AD、BC的垂直平分線交于點(diǎn)M,點(diǎn)M即為旋轉(zhuǎn)中心此題得解.【詳解】當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C時(shí),連接AC、BD,分別作線段AC、BD的垂直平分線交于點(diǎn)E,如圖1所示:點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D時(shí),連接AD、BC,分別作線段AD、BC的垂直平分線交于點(diǎn)M,如圖2所示:點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.綜上所述:這個(gè)旋轉(zhuǎn)中心的坐標(biāo)為或.故答案為或.【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化中的旋轉(zhuǎn),根據(jù)給定點(diǎn)的坐標(biāo)找出旋轉(zhuǎn)中心的坐標(biāo)是解題的關(guān)鍵.15、(,),(-4,-5)【解析】

求出點(diǎn)A、B、C的坐標(biāo),當(dāng)D在x軸下方時(shí),設(shè)直線CD與x軸交于點(diǎn)E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標(biāo),再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標(biāo),再由對(duì)稱性即可求出D在x軸上方時(shí)的坐標(biāo).【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當(dāng)點(diǎn)D在x軸下方時(shí),∴設(shè)直線CD與x軸交于點(diǎn)E,過點(diǎn)E作EG⊥CB于點(diǎn)G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設(shè)EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設(shè)CE的解析式為y=mx+n,交拋物線于點(diǎn)D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標(biāo)為(-4,-5)設(shè)點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設(shè)CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標(biāo)為(-,)故答案為(-,)或(-4,-5)【點(diǎn)睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是根據(jù)對(duì)稱性求出相關(guān)點(diǎn)的坐標(biāo),利用直線解析式以及拋物線的解析式即可求出點(diǎn)D的坐標(biāo).16、30【解析】

根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【點(diǎn)睛】本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個(gè)內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.17、1【解析】

將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點(diǎn)睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.18、四【解析】

任何多邊形的外角和是360度,因而這個(gè)多邊形的內(nèi)角和是360度.n邊形的內(nèi)角和是(n-2)?180°,如果已知多邊形的內(nèi)角和,就可以得到一個(gè)關(guān)于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【詳解】解:設(shè)邊數(shù)為n,根據(jù)題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.【點(diǎn)睛】此題主要考查已知多邊形的內(nèi)角和求邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長(zhǎng)度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長(zhǎng),根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡(jiǎn),得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡(jiǎn),得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡(jiǎn),得:b2+8b﹣8=0,解得:b=﹣4±2;即點(diǎn)Q的坐標(biāo)為(1,)或(1,).點(diǎn)睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識(shí)點(diǎn);后兩個(gè)小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.20、(1);(2);(3)【解析】

(1)把A(-1,0)代入y=x2-bx+c,即可得到結(jié)論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當(dāng)x=0時(shí),得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結(jié)論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設(shè)QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設(shè)MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點(diǎn)D為拋物線頂點(diǎn),∴,∴,當(dāng)時(shí),,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設(shè),則,∴,同理,設(shè),則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當(dāng)時(shí),,∴,∴,∴,∵,∴,∴,,,過P作于T,∴,∴,∴.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、(1)時(shí),S最大為(1)(-1,1)或或或(1,-1)【解析】試題分析:(1)先假設(shè)出函數(shù)解析式,利用三點(diǎn)法求解函數(shù)解析式.(2)設(shè)出M點(diǎn)的坐標(biāo),利用S=S△AOM+S△OBM﹣S△AOB即可進(jìn)行解答;(1)當(dāng)OB是平行四邊形的邊時(shí),表示出PQ的長(zhǎng),再根據(jù)平行四邊形的對(duì)邊相等列出方程求解即可;當(dāng)OB是對(duì)角線時(shí),由圖可知點(diǎn)A與P應(yīng)該重合,即可得出結(jié)論.試題解析:解:(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點(diǎn)代入函數(shù)解析式得:解得,所以此函數(shù)解析式為:.(2)∵M(jìn)點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,∴M點(diǎn)的坐標(biāo)為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當(dāng)m=-時(shí),S有最大值為:S=-.(1)設(shè)P(x,).分兩種情況討論:①當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PB∥OQ,∴Q的橫坐標(biāo)的絕對(duì)值等于P的橫坐標(biāo)的絕對(duì)值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標(biāo)為(-1,1)或或;②當(dāng)BO為對(duì)角線時(shí),如圖,知A與P應(yīng)該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標(biāo)為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標(biāo)為:(-1,1)或或或(1,-1).點(diǎn)睛:本題是對(duì)二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對(duì)邊相等的性質(zhì),平面直角坐標(biāo)系中兩點(diǎn)間的距離的表示,綜合性較強(qiáng),但難度不大,仔細(xì)分析便不難求解.22、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長(zhǎng)AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點(diǎn)睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運(yùn)用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會(huì)利用三角形的三邊關(guān)系解決最值問題,屬于中考?jí)狠S題.23、(1)5;(2);(3)時(shí),半徑PF=;t=16,半徑PF=12.【解析】

(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,此時(shí),EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=FG,分以下三種情況:①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;②當(dāng)0<t<4時(shí),如解圖1,作FG⊥BC于點(diǎn)G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時(shí)⊙F的半徑PF=;③當(dāng)t>4時(shí),如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時(shí)⊙F的半徑PF=12.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,動(dòng)點(diǎn)的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).24、(1)50、10、0.16;(2)144°;(3).【解析】

(1)由B觀點(diǎn)的人數(shù)和所占的頻率即可求出總?cè)藬?shù);由總?cè)藬?shù)即可求出a、b的值,(2)用360°乘以D觀點(diǎn)的頻率即可得;(3)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解【詳解】解:(1)參加本次討論的學(xué)生共有12÷0.24=50,則a=50×0.2=10,b=8÷50=0.16,故答案為50、10、0.16;(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;(3)根據(jù)題意畫出樹狀圖如下:由樹形圖可知:共有12中可能情況,選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論