浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省杭州市高級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,函數(shù)的圖像是()A. B.C. D.2.在中,,,為的外接圓的圓心,則()A. B.C. D.3.已知向量,,則向量在向量方向上的投影為()A. B. C. D.4.?dāng)?shù)列的通項(xiàng)公式,其前項(xiàng)和為,則等于()A. B. C. D.5.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.96.若是一個(gè)圓的方程,則實(shí)數(shù)的取值范圍是()A. B.C. D.7.邊長為的正三角形中,點(diǎn)在邊上,,是的中點(diǎn),則()A. B. C. D.8.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),為單位圓上一點(diǎn),以軸為始邊,為終邊的角為,,若將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,則點(diǎn)的坐標(biāo)為()A. B. C. D.9.若向量,,則點(diǎn)B的坐標(biāo)為()A. B. C. D.10.若則一定有()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則=_________________12.如圖是一個(gè)三角形數(shù)表,記,,…,分別表示第行從左向右數(shù)的第1個(gè)數(shù),第2個(gè)數(shù),…,第個(gè)數(shù),則當(dāng),時(shí),______.13.如圖所示,E,F(xiàn)分別是邊長為1的正方形的邊BC,CD的中點(diǎn),將其沿AE,AF,EF折起使得B,D,C三點(diǎn)重合.則所圍成的三棱錐的體積為___________.14.中,內(nèi)角、、所對的邊分別是、、,已知,且,,則的面積為_____.15.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個(gè)數(shù)列,若,則________________.16.已知,是夾角為的兩個(gè)單位向量,向量,,若,則實(shí)數(shù)的值為________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點(diǎn).(1)求證:平面;(2)若平面平面,,求三棱錐的體積.18.已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖象上.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列,求數(shù)列的前項(xiàng)和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實(shí)數(shù)的取值范圍.19.如圖已知平面,,,,,,點(diǎn),分別為,的中點(diǎn).(1)求證://平面;(2)求直線與平面所成角的大小.20.某企業(yè)用180萬元購買一套新設(shè)備,該套設(shè)備預(yù)計(jì)平均每年能給企業(yè)帶來100萬元的收入,為了維護(hù)設(shè)備的正常運(yùn)行,第一年需要各種維護(hù)費(fèi)用10萬元,且從第二年開始,每年比上一年所需的維護(hù)費(fèi)用要增加10萬元(1)求該設(shè)備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關(guān)系;(2)試計(jì)算這套設(shè)備使用多少年,可使年平均利潤最大?年平均利潤最大為多少萬元?21.請你幫忙設(shè)計(jì)2010年玉樹地震災(zāi)區(qū)小學(xué)的新校舍,如圖,在學(xué)校的東北力有一塊地,其中兩面是不能動(dòng)的圍墻,在邊界內(nèi)是不能動(dòng)的一些體育設(shè)施.現(xiàn)準(zhǔn)備在此建一棟教學(xué)樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設(shè)計(jì),才能使教學(xué)樓的面積最大?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)的取值進(jìn)行分類討論,去掉中絕對值符號,轉(zhuǎn)化為分段函數(shù),利用正弦函數(shù)的圖象即可得解.【詳解】當(dāng)時(shí),;當(dāng)時(shí),.因此,函數(shù)的圖象是B選項(xiàng)中的圖象.故選:B.【點(diǎn)睛】本題考查正切函數(shù)與正弦函數(shù)的圖象,去掉絕對值是關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中等題.2、A【解析】

利用正弦定理可求出的外接圓半徑.【詳解】由正弦定理可得,因此,,故選A.【點(diǎn)睛】本題考查利用正弦定理求三角形外接圓的半徑,考查計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】

先計(jì)算向量夾角,再利用投影定義計(jì)算即可.【詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)表示以及向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.4、B【解析】

依據(jù)為周期函數(shù),得到,并項(xiàng)求和,即可求出的值?!驹斀狻恳?yàn)闉橹芷诤瘮?shù),周期為4,所以,,故選B?!军c(diǎn)睛】本題主要考查數(shù)列求和方法——并項(xiàng)求和法的應(yīng)用,以及三角函數(shù)的周期性,分論討論思想,意在考查學(xué)生的推理論證和計(jì)算能力。5、C【解析】

因?yàn)椴坏仁胶愠闪?,所以只求得的最小值即可,結(jié)合,用“1”的代換求其最小值.【詳解】因?yàn)椋?,,若不等式恒成立,令y=,當(dāng)且僅當(dāng)且即時(shí),取等號所以所以故t的最大值為1.故選:C【點(diǎn)睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運(yùn)算求解的能力,屬于中檔題.6、C【解析】

根據(jù)即可求出結(jié)果.【詳解】據(jù)題意,得,所以.【點(diǎn)睛】本題考查圓的一般方程,屬于基礎(chǔ)題型.7、D【解析】

,故選D.8、C【解析】

由題意利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得點(diǎn)的坐標(biāo).【詳解】為單位圓上一點(diǎn),以軸為始邊,為終邊的角為,,若將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,則點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,故點(diǎn)的坐標(biāo)為.故選C.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,考查基本的運(yùn)算求解能力.9、B【解析】

根據(jù)向量的坐標(biāo)運(yùn)算得到,得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,意在考查學(xué)生的計(jì)算能力.10、D【解析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點(diǎn)睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個(gè)公式后選用哪個(gè)公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過這個(gè)關(guān)系都能選用恰當(dāng)?shù)墓剑?2、【解析】

由圖表,利用歸納法,得出,再利用疊加法,即可求解數(shù)列的通項(xiàng)公式.【詳解】由圖表,可得,,,,,可歸納為,利用疊加法可得:,故答案為.【點(diǎn)睛】本題主要考查了歸納推理的應(yīng)用,以及數(shù)列的疊加法的應(yīng)用,其中解答中根據(jù)圖表,利用歸納法,求得數(shù)列的遞推關(guān)系式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.13、【解析】

根據(jù)折疊后不變的垂直關(guān)系,結(jié)合線面垂直判定定理可得到為三棱錐的高,由此可根據(jù)三棱錐體積公式求得結(jié)果.【詳解】設(shè)點(diǎn)重合于點(diǎn),如下圖所示:,,又平面,平面,即為三棱錐的高故答案為:【點(diǎn)睛】本題考查立體幾何折疊問題中的三棱錐體積的求解問題,處理折疊問題的關(guān)鍵是能夠明確折疊后的不變量,即不變的垂直關(guān)系和長度關(guān)系.14、【解析】

由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時(shí)要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.15、【解析】

由圖乙可得:第行有個(gè)數(shù),且第行最后的一個(gè)數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個(gè)數(shù),則前行共有個(gè)數(shù),②第行最后的一個(gè)數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個(gè)數(shù)為,這行中第個(gè)數(shù)為,前行共有個(gè)數(shù),則為第個(gè)數(shù).故填.【點(diǎn)睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個(gè)體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.16、【解析】

由題意得,且,,由=,解得即可.【詳解】已知,是夾角為的兩個(gè)單位向量,所以,得,若解得故答案為【點(diǎn)睛】本題考查了向量數(shù)量積的運(yùn)算性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)取中點(diǎn)為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計(jì)算.【詳解】證明:(1)取中點(diǎn)為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點(diǎn),則【點(diǎn)睛】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關(guān)鍵是找到線線平行,而棱錐的體積常常用等積變換,轉(zhuǎn)化頂點(diǎn)與底.18、(1);(2);(3).【解析】

(1)將點(diǎn)代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和;(3)利用分組求和法與裂項(xiàng)法求出數(shù)列的前項(xiàng)和,由題意得出,判斷出數(shù)列各項(xiàng)的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實(shí)數(shù)的取值范圍.【詳解】(1)將點(diǎn)代入函數(shù)的解析式得到.當(dāng)時(shí),,即,解得;當(dāng)時(shí),由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項(xiàng)和,則.因?yàn)?,,,,?dāng)時(shí),,令,,令,則,當(dāng)時(shí),,此時(shí),數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當(dāng)時(shí),數(shù)列為單調(diào)遞減數(shù)列,此時(shí),則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時(shí),函數(shù)的最大值為.因?yàn)閷θ我獾?,存在?所以,解得,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用等比數(shù)列前項(xiàng)和求數(shù)列通項(xiàng),同時(shí)也考查了錯(cuò)位相減法求和以及數(shù)列不等式恒成立問題,解題時(shí)要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項(xiàng)或最小項(xiàng)的值,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于難題.19、(1)見證明;(2)【解析】

(1)要證線面平行即證線線平行,本題連接A1B,(2)取中點(diǎn),連接證明平面,再求出,得到.【詳解】(1)如圖,連接,在中,因?yàn)楹头謩e是和的中點(diǎn),所以.又因?yàn)槠矫?,所以平面;取中點(diǎn)和中點(diǎn),連接,,.因?yàn)楹头謩e為和,所以,,故且,所以,且.又因?yàn)槠矫?,所以平面,從而為直線與平面所成的角.在中,可得,所以.因?yàn)椋?,,,所以,,又由,有.在中,可得;在中,,因此.所以直線與平面所成角為.【點(diǎn)睛】求線面角一般有兩個(gè)方法:幾何法做出線上一點(diǎn)到平面的高,求出高;或利用等體積法求高向量法.20、(1),(2)這套設(shè)備使用6年,可使年平均利潤最大,最大利潤為35萬元【解析】

(1)運(yùn)用等差數(shù)列前項(xiàng)和公式可以求出年的維護(hù)費(fèi),這樣可以由題意可以求出該設(shè)備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關(guān)系;(2)利用基本不等式可以求出年平均利潤最大值.【詳解】解:(1)由題意知,年總收入為萬元年維護(hù)總費(fèi)用為萬元.∴總利潤,即,(2)年平均利潤為∵,∴當(dāng)且僅當(dāng),即時(shí)取“”∴答:這套設(shè)備使用6年,可使年平均利潤最大,最大利潤為35萬元.【點(diǎn)睛】本題考查了應(yīng)用數(shù)學(xué)知識解決生活實(shí)際問題的能力,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)建模能力,考查了數(shù)學(xué)運(yùn)算能力.21、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論