四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省成都外國語高級中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,向量,則()A. B. C. D.2.若三個球的半徑的比是1:2:3,則其中最大的一個球的體積是另兩個球的體積之和的()倍.A.95 B.2 C.523.設(shè)是等差數(shù)列的前項(xiàng)和,若,則A. B. C. D.4.設(shè)為直線,是兩個不同的平面,下列說法中正確的是()A.若,則B.若,則C.若,則D.若,則5.已知,下列不等式中必成立的一個是()A. B. C. D.6.光線自點(diǎn)M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.7.空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)是()A. B.C. D.8.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.9.已知,,則在方向上的投影為()A. B. C. D.10.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則()A.31 B.32 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,分別是角的對邊,已知成等比數(shù)列,且,則的值為________.12.函數(shù)的定義域?yàn)開________.13.在賽季季后賽中,當(dāng)一個球隊(duì)進(jìn)行完場比賽被淘汰后,某個籃球愛好者對該隊(duì)的7場比賽得分情況進(jìn)行統(tǒng)計(jì),如表:場次得分104為了對這個隊(duì)的情況進(jìn)行分析,此人設(shè)計(jì)計(jì)算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.14.設(shè),,,則,,從小到大排列為______15.在中,角所對邊長分別為,若,則的最小值為__________.16.等差數(shù)列的前項(xiàng)和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前15項(xiàng)和.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖1,已知菱形的對角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.18.如圖,在四棱錐中,平面平面,四邊形為矩形,,點(diǎn),分別是,的中點(diǎn).求證:(1)直線∥平面;(2)平面平面.19.已知數(shù)列的前項(xiàng)和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.20.已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).(Ⅰ)求證:PC∥平面EBD;(Ⅱ)求證:平面PBC⊥平面PCD.21.已知函數(shù)(其中,)的最小正周期為.(1)求的值;(2)如果,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

設(shè),根據(jù)系數(shù)對應(yīng)關(guān)系即可求解【詳解】設(shè),即,故選:C【點(diǎn)睛】本題考查向量共線的基本運(yùn)算,屬于基礎(chǔ)題2、D【解析】

設(shè)最小球的半徑為R,根據(jù)比例關(guān)系即可得到另外兩個球的半徑,再利用球的體積公式表示出三個球的體積,即可得到結(jié)論。【詳解】設(shè)最小球的半徑為R,由三個球的半徑的比是1:2:3,可得另外兩個球的半徑分別為2R,3R;∴最小球的體積V1=43π∴V故答案選D【點(diǎn)睛】本題主要考查球體積的計(jì)算公式,屬于基礎(chǔ)題。3、A【解析】,,選A.4、C【解析】

畫出長方體,按照選項(xiàng)的內(nèi)容在長方體中找到相應(yīng)的情況,即可得到答案【詳解】對于選項(xiàng)A,在長方體中,任何一條棱都和它相對的兩個平面平行,但這兩個平面相交,所以A不正確;對于選項(xiàng)B,若,分別是長方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對于選項(xiàng)D,在長方體中,令下底面為,左邊側(cè)面為,此時,在右邊側(cè)面中取一條對角線,則,但與不垂直,所以D不正確;對于選項(xiàng)C,設(shè)平面,且,因?yàn)椋裕?,所以,又,所以,所以C正確.【點(diǎn)睛】本題考查直線與平面的位置關(guān)系,屬于簡單題5、B【解析】

根據(jù)不等式的性質(zhì),對選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對于A選項(xiàng),由于,不等號方向不相同,不能相加,故A選項(xiàng)錯誤.對于B選項(xiàng),由于,所以,而,根據(jù)不等式的性質(zhì)有:,故B選項(xiàng)正確.對于C選項(xiàng),,而兩個數(shù)的正負(fù)無法確定,故無法判斷的大小關(guān)系,故C選項(xiàng)錯誤.對于D選項(xiàng),,而兩個數(shù)的正負(fù)無法確定,故無法判斷的大小關(guān)系,故D選項(xiàng)錯誤.故選:B.【點(diǎn)睛】本小題主要考查根據(jù)不等式的性質(zhì)判斷不等式是否成立,屬于基礎(chǔ)題.6、B【解析】試題分析:點(diǎn)關(guān)于軸的對稱點(diǎn),則反射光線即在直線上,由,∴,故選B.考點(diǎn):直線方程的幾種形式.7、A【解析】

關(guān)于軸對稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對稱的兩點(diǎn)的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對稱的問題.屬于基礎(chǔ)題.8、B【解析】

將棱錐補(bǔ)成長方體,根據(jù)長方體的外接球的求解方法法得到結(jié)果.【詳解】根據(jù)題意得到棱錐的三條側(cè)棱兩兩垂直,可以以三條側(cè)棱為長方體的楞,該三棱錐補(bǔ)成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點(diǎn)處。設(shè)球的半徑為R,則表面積為故答案為:B.【點(diǎn)睛】本題考查了球與幾何體的問題,是高考中的重點(diǎn)問題,要有一定的空間想象能力,這樣才能找準(zhǔn)關(guān)系,得到結(jié)果,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點(diǎn)距離相等,這樣可先確定幾何體中部分點(diǎn)組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點(diǎn)到多邊形的頂點(diǎn)的距離相等,然后同樣的方法找到另一個多邊形的各頂點(diǎn)距離相等的直線(這兩個多邊形需有公共點(diǎn)),這樣兩條直線的交點(diǎn),就是其外接球的球心,再根據(jù)半徑,頂點(diǎn)到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補(bǔ)體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補(bǔ)成長方體,它們是同一個外接球.9、A【解析】在方向上的投影為,選A.10、A【解析】

根據(jù)與的等差中項(xiàng)為,可得到一個等式,和,組成一個方程組,結(jié)合等比數(shù)列的性質(zhì),這個方程組轉(zhuǎn)化為關(guān)于和公比的方程組,解這個方程組,求出和公比的值,再利用等比數(shù)列前項(xiàng)和公式,求出的值.【詳解】因?yàn)榕c的等差中項(xiàng)為,所以,因此有,故本題選A.【點(diǎn)睛】本題考查了等差中項(xiàng)的性質(zhì),等比數(shù)列的通項(xiàng)公式以及前項(xiàng)和公式,二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用成等比數(shù)列得到,再利用余弦定理可得,而根據(jù)正弦定理和成等比數(shù)列有,從而得到所求之值.【詳解】∵成等比數(shù)列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因?yàn)?,所以,?故答案為.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.12、【解析】

根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列出不等式求解集即可.【詳解】對數(shù)函數(shù)f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定義域?yàn)椋?,+∞).故答案為:(1,+∞).【點(diǎn)睛】本題考查了求對數(shù)函數(shù)的定義域問題,是基礎(chǔ)題.13、【解析】

根據(jù)題意,模擬程序框圖的運(yùn)行過程,得出該程序運(yùn)行的是求數(shù)據(jù)的標(biāo)準(zhǔn)差,即可求得答案.【詳解】模擬程序框圖的運(yùn)行過程知,該程序運(yùn)行的結(jié)果是求這個數(shù)據(jù)的標(biāo)準(zhǔn)差這組數(shù)據(jù)的平均數(shù)是方差是:標(biāo)準(zhǔn)差是故答案為:.【點(diǎn)睛】本題主要考查了根據(jù)程序框圖求輸出結(jié)果,解題關(guān)鍵是掌握程序框圖基礎(chǔ)知識和計(jì)算數(shù)據(jù)方差的解法,考查了分析能力和計(jì)算能力,屬于中檔題.14、【解析】

首先利用輔助角公式,半角公式,誘導(dǎo)公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對,,排序即可.【詳解】由題知,,,因?yàn)檎液瘮?shù)在上單調(diào)遞增,所以.故答案為:.【點(diǎn)睛】本題考查了輔助角公式,半角公式,誘導(dǎo)公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.15、【解析】

根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時取等號故故的最小值為故答案為:【點(diǎn)睛】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.16、(1),;(2)125.【解析】

(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項(xiàng)為正,后面為負(fù),再計(jì)算數(shù)列的前15項(xiàng)和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負(fù)分界處是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運(yùn)算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計(jì)算結(jié)果.【詳解】(Ⅰ)折疊前,因?yàn)樗倪呅螢榱庑?,所以;所以折疊后,,,又,平面,所以平面因?yàn)樗倪呅螢榱庑?,所以.又點(diǎn)為線段的中點(diǎn),所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因?yàn)槠矫妫云矫嫫矫妫á颍﹫D1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【點(diǎn)睛】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查了三棱錐體積的求法,運(yùn)用了轉(zhuǎn)化思想,是中檔題.18、(1)見解析(2)見解析【解析】

(1)取中點(diǎn),連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)取中點(diǎn),連接,.在中,,分別為,中點(diǎn),則且,又四邊形為矩形,為中點(diǎn),且,所以,故四邊形為平行四邊形,從而,又,,所以直線.(2)因?yàn)榫匦?,所以,又平面,面,,所以,又,則,又,,所以,又,所以平面平面.【點(diǎn)睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1)見證明;(2)見證明【解析】

(1)由,得,兩式作差可得,利用等比數(shù)列的定義,即可作出證明;(2)由(1)可得,得到,利用裂項(xiàng)法求得數(shù)列的和,即可作出證明.【詳解】(1)證明:由,得,兩式作差可得:,即,即,又,得,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)可得,數(shù)列的通項(xiàng)公式為,又由,所以.所以.【點(diǎn)睛】本題主要考查了等比數(shù)列的定義,以及數(shù)列“裂項(xiàng)法”求和的應(yīng)用,其中解答中熟記等比數(shù)列的定義和通項(xiàng),以及合理利用數(shù)列的“裂項(xiàng)法”求得數(shù)列的前n項(xiàng)和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20、(Ⅰ)見解析(Ⅱ)見解析【解析】試題分析:(1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;

(2)證明,即可證得平面平面.試題解析:(Ⅰ)連接AC交BD與O,連接EO,∵E、O分別為PA、AC的中點(diǎn),∴EO∥PC,∵PC?平面EBD,EO?平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論