2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第1頁
2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第2頁
2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第3頁
2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第4頁
2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆海南省屯昌縣達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個動點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是A.3 B. C. D.42.如圖,A(4,0),B(1,3),以O(shè)A、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)C.則下列結(jié)論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點(diǎn)B落在反比例函數(shù)的圖象上.D.將□OACB繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)C的對應(yīng)點(diǎn)落在反比例函數(shù)圖象的另一分支上.3.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.4.若⊙O的半徑為5cm,OA=4cm,則點(diǎn)A與⊙O的位置關(guān)系是()A.點(diǎn)A在⊙O內(nèi) B.點(diǎn)A在⊙O上 C.點(diǎn)A在⊙O外 D.內(nèi)含5.如圖,將矩形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°6.如圖,在中,,將繞點(diǎn)逆時針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.7.在中,,,,則的值是()A. B. C. D.8.今年春節(jié)某一天早7:00,室內(nèi)溫度是6℃,室外溫度是-2℃,則室內(nèi)溫度比室外溫度高()A.-4℃ B.4℃ C.8℃ D.-8℃9.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°10.已知函數(shù)的圖象與x軸有交點(diǎn).則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3二、填空題(共7小題,每小題3分,滿分21分)11.將拋物線y=(x+m)2向右平移2個單位后,對稱軸是y軸,那么m的值是_____.12.因式分解:a2﹣a=_____.13.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)D為AB的中點(diǎn),將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,則D′B長為_____.14.已知一次函數(shù)y=ax+b的圖象如圖所示,根據(jù)圖中信息請寫出不等式ax+b≥2的解集為___________.15.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.16.一組數(shù)據(jù)1,4,4,3,4,3,4的眾數(shù)是_____.17.因式分解:x2﹣3x+(x﹣3)=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,矩形DOBC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,B、D分別在坐標(biāo)軸上,點(diǎn)C的坐標(biāo)為(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.(1)求反比例函數(shù)的解析式;(2)求△OEF的面積;(3)設(shè)直線EF的解析式為y=k2x+b,請結(jié)合圖象直接寫出不等式k2x+b>的解集.19.(5分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.20.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)B是△AA′C的重心,求的值.(3)應(yīng)用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點(diǎn)A在直線l1上,有一邊的長是BC的倍.將△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點(diǎn)D.求CD的值.21.(10分)計算:2tan45°-(-)o-22.(10分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?23.(12分)如圖,正方形OABC繞著點(diǎn)O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)24.(14分)已知一個二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點(diǎn),求這個函數(shù)解析式以及點(diǎn)C的坐標(biāo).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:解:當(dāng)射線AD與⊙C相切時,△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設(shè)EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點(diǎn):1.切線的性質(zhì);2.三角形的面積.2、B【解析】

先根據(jù)平行四邊形的性質(zhì)得到點(diǎn)的坐標(biāo),再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質(zhì)對選項進(jìn)行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn),,反比例函數(shù)解析式為.□OACB的面積為,正確;當(dāng)時,,故錯誤;將□OACB向上平移12個單位長度,點(diǎn)的坐標(biāo)變?yōu)椋诜幢壤瘮?shù)圖象上,故正確;因為反比例函數(shù)的圖象關(guān)于原點(diǎn)中心對稱,故將□OACB繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)C的對應(yīng)點(diǎn)落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點(diǎn)睛】本題綜合考查了平行四邊形的性質(zhì)和反比例函數(shù)的圖象與性質(zhì),結(jié)合圖形,熟練掌握和運(yùn)用相關(guān)性質(zhì)定理是解答關(guān)鍵.3、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.4、A【解析】

直接利用點(diǎn)與圓的位置關(guān)系進(jìn)而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.【點(diǎn)睛】此題主要考查了點(diǎn)與圓的位置關(guān)系,正確①點(diǎn)P在圓外?d>r,②點(diǎn)P在圓上?d=r,③點(diǎn)P在圓內(nèi)?d<r是解題關(guān)鍵.5、D【解析】

先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.6、A【解析】

先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.7、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點(diǎn)睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.8、C【解析】

根據(jù)題意列出算式,計算即可求出值.【詳解】解:根據(jù)題意得:6-(-2)=6+2=8,

則室內(nèi)溫度比室外溫度高8℃,

故選:C.【點(diǎn)睛】本題考查了有理數(shù)的減法,熟練掌握運(yùn)算法則是解題的關(guān)鍵.9、D【解析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運(yùn)用,解題時注意:兩直線平行,同旁內(nèi)角互補(bǔ).解決問題的關(guān)鍵是作平行線.10、B【解析】試題分析:若此函數(shù)與x軸有交點(diǎn),則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當(dāng)k=3時,此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點(diǎn):函數(shù)圖像與x軸交點(diǎn)的特點(diǎn).二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【點(diǎn)睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.12、a(a﹣1)【解析】

直接提取公因式a,進(jìn)而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點(diǎn)睛】此題考查公因式,難度不大13、.【解析】

試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點(diǎn)D為AB的中點(diǎn),∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點(diǎn):旋轉(zhuǎn)的性質(zhì).14、x≥1.【解析】試題分析:根據(jù)題意得當(dāng)x≥1時,ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點(diǎn):一次函數(shù)與一元一次不等式.15、(或)【解析】

將拋物線化為頂點(diǎn)式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點(diǎn)式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點(diǎn)睛】此題不僅考查了對圖象平移的理解,同時考查了學(xué)生將一般式轉(zhuǎn)化頂點(diǎn)式的能力.16、1【解析】

本題考查了統(tǒng)計的有關(guān)知識,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故答案為1.【點(diǎn)睛】本題為統(tǒng)計題,考查了眾數(shù)的定義,是基礎(chǔ)題型.17、(x-3)(x+1);【解析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點(diǎn)睛:此題主要考查了因式分解,關(guān)鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進(jìn)行分解因式即可.三、解答題(共7小題,滿分69分)18、(1)y=;(2);(3)<x<1.【解析】

(1)先利用矩形的性質(zhì)確定C點(diǎn)坐標(biāo)(1,4),再確定A點(diǎn)坐標(biāo)為(3,2),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k1=1,即反比例函數(shù)解析式為y=;(2)利用反比例函數(shù)解析式確定F點(diǎn)的坐標(biāo)為(1,1),E點(diǎn)坐標(biāo)為(,4),然后根據(jù)△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF進(jìn)行計算;(3)觀察函數(shù)圖象得到當(dāng)<x<1時,一次函數(shù)圖象都在反比例函數(shù)圖象上方,即k2x+b>.【詳解】(1)∵四邊形DOBC是矩形,且點(diǎn)C的坐標(biāo)為(1,4),∴OB=1,OD=4,∵點(diǎn)A為線段OC的中點(diǎn),∴A點(diǎn)坐標(biāo)為(3,2),∴k1=3×2=1,∴反比例函數(shù)解析式為y=;(2)把x=1代入y=得y=1,則F點(diǎn)的坐標(biāo)為(1,1);把y=4代入y=得x=,則E點(diǎn)坐標(biāo)為(,4),△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由圖象得:不等式不等式k2x+b>的解集為<x<1.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解即可.19、(1)-1;(2).【解析】

(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負(fù)整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當(dāng)a=﹣2+時,原式==.【點(diǎn)睛】本題考查了學(xué)生的運(yùn)算能力,解題的關(guān)鍵是熟練運(yùn)用運(yùn)算法則,本題屬于基礎(chǔ)題型.20、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點(diǎn)B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進(jìn)行討論:①當(dāng)時和②當(dāng)時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點(diǎn)B是的重心,∴設(shè)則由勾股定理得∴(3)①當(dāng)時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設(shè)∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當(dāng)時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°,得到時,點(diǎn)A'在直線l1上,∴∥l1,即直線與l1無交點(diǎn),綜上所述,CD的值為【點(diǎn)睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關(guān)鍵.21、2-【解析】

先求三角函數(shù),再根據(jù)實數(shù)混合運(yùn)算法計算.【詳解】解:原式=2×1-1-=1+1-=2-【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對三角函數(shù)值的應(yīng)用,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.22、15千米.【解析】

首先設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意可得等量關(guān)系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論