![江西省豐城四中高三下學期聯考新高考數學試題及答案解析_第1頁](http://file4.renrendoc.com/view2/M03/29/09/wKhkFmZyMgyAdntZAAHJ7Efwu9c623.jpg)
![江西省豐城四中高三下學期聯考新高考數學試題及答案解析_第2頁](http://file4.renrendoc.com/view2/M03/29/09/wKhkFmZyMgyAdntZAAHJ7Efwu9c6232.jpg)
![江西省豐城四中高三下學期聯考新高考數學試題及答案解析_第3頁](http://file4.renrendoc.com/view2/M03/29/09/wKhkFmZyMgyAdntZAAHJ7Efwu9c6233.jpg)
![江西省豐城四中高三下學期聯考新高考數學試題及答案解析_第4頁](http://file4.renrendoc.com/view2/M03/29/09/wKhkFmZyMgyAdntZAAHJ7Efwu9c6234.jpg)
![江西省豐城四中高三下學期聯考新高考數學試題及答案解析_第5頁](http://file4.renrendoc.com/view2/M03/29/09/wKhkFmZyMgyAdntZAAHJ7Efwu9c6235.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省豐城四中高三下學期聯考新高考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.2.已知函數,則()A. B.1 C.-1 D.03.復數().A. B. C. D.4.已知函數為奇函數,且,則()A.2 B.5 C.1 D.35.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.367.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.8.若復數滿足,則的虛部為()A.5 B. C. D.-59.函數的定義域為,集合,則()A. B. C. D.10.生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.為弘揚中國傳統文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.11.已知函數的最小正周期為,為了得到函數的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.若集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側面中,與所成的銳二面角相等的側面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)14.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數是80,則成績在區(qū)間的學生人數是__________.15.函數的定義域是___________.16.函數在的零點個數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數的導數:(1)(2)18.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.19.(12分)已知直線的參數方程:(為參數)和圓的極坐標方程:(1)將直線的參數方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.20.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.21.(12分)設函數,其中是自然對數的底數.(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數與函數的圖象交于,且線段的中點為,證明:.22.(10分)若函數在處有極值,且,則稱為函數的“F點”.(1)設函數().①當時,求函數的極值;②若函數存在“F點”,求k的值;(2)已知函數(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
基本事件總數為個,都恰有兩個陽爻包含的基本事件個數為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統文化,考查概率、計數原理等基本知識,考查抽象概括能力和應用意識,屬于基礎題.2、A【解析】
由函數,求得,進而求得的值,得到答案.【詳解】由題意函數,則,所以,故選A.【點睛】本題主要考查了分段函數的求值問題,其中解答中根據分段函數的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、A【解析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.4、B【解析】
由函數為奇函數,則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數中的應用,考查學生分析問題的能力,難度較易.5、A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6、B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.7、D【解析】
整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.8、C【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.9、A【解析】
根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.10、C【解析】
分情況討論,由間接法得到“數”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數,不考慮限制因素,總數有種,進而得到結果.【詳解】當“數”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當“數”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質進行分類;②按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).11、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數的圖象與性質.【名師點睛】三角函數圖象變換方法:12、B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】
取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質即可判斷;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面角,考查空間想象能力與轉化思想.14、30【解析】
根據頻率直方圖中數據先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數是.故答案為:30【點睛】本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數據處理,數形運算的能力,屬于基礎題.15、【解析】
由于偶次根式中被開方數非負,對數的真數要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數定義域的求法,屬于基礎題.16、【解析】
求出的范圍,再由函數值為零,得到的取值可得零點個數.【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數的性質和函數的零點,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據復合函數的求導法則可得結果.(2)同樣根據復合函數的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數的導數,此類問題一般是先把函數分解為簡單函數的復合,再根據復合函數的求導法則可得所求的導數,本題屬于容易題.18、(1)(2)是為定值,的橫坐標為定值【解析】
(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.19、(1):,:;(2)【解析】
(1)消去參數求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標方程.(2)求得直線的標準參數方程,代入圓的直角坐標方程,化簡后寫出韋達定理,根據直線參數的幾何意義,求得的值.【詳解】(1)消去參數,得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標方程為;(2)經檢驗點在直線上,可轉化為①,將①式代入圓的直角坐標方程為得,化簡得,設是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數方程化為普通方程、極坐標方程化為直角坐標方程,考查利用直線參數的幾何意義求解距離問題,屬于中檔題.20、(1);(2).【解析】
(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.21、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數研究的單調性、極值,從而得到參數的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調遞減,且當時,單調遞增;當時,單調遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設,即證:要證,只需證:令,則在上為增函數,即成立;要證,只需證明:令,則在上為減函數,,即成立成立,所以成立.【點睛】本題考查利用導數研究函數的單調性、極值,利用導數證明不等式,屬于難題;22、(1)①極小值為1,無極大值.②實數k的值為1.(2)【解析】
(1)①將代入可得,求導討論函數單調性,即得極值;②設是函數的一個“F點”(),即是的零點,那么由導數可知,且,可得,根據可得,設,由的單調性可得,即得.(2)方法一:先求的導數,存在兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年肥酒項目可行性研究報告
- 2025年環(huán)氧乙烷滅菌器項目可行性研究報告
- 2025至2031年中國流行時裝行業(yè)投資前景及策略咨詢研究報告
- 2025年料盤項目可行性研究報告
- 2025至2031年中國多孔鈦棒行業(yè)投資前景及策略咨詢研究報告
- 2025年塑料培育盤項目可行性研究報告
- 2025年半導體/磁性材料清洗設備項目可行性研究報告
- 2025至2031年中國PC防爆燈罩行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國高效低噪音螺旋分離器數據監(jiān)測研究報告
- 2025至2030年中國降焦醋纖濾棒數據監(jiān)測研究報告
- 家庭生活中的安全隱患及預防方法
- 食堂炊事員聘用合同
- 電氣工程師生涯人物訪談報告
- 信用信息平臺建設方案
- 大地保險理賠標準
- 車險經營情況分析報告模板
- 農業(yè)一張圖建設方案
- 心肌梗死的心電圖改變
- 七年級上冊數學思維導圖·李樹茂幫你簡單學數學
- 三星SHP-DP728指紋鎖說明書
- 預應力錨索張拉及封錨
評論
0/150
提交評論