河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷及答案解析_第1頁
河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷及答案解析_第2頁
河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷及答案解析_第3頁
河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷及答案解析_第4頁
河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省淶水縣波峰中學(xué)新高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數(shù)滿足,且當(dāng)時,.設(shè)在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.2.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.3.從某市的中學(xué)生中隨機調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計值為A. B.C. D.4.已知實數(shù)滿足不等式組,則的最小值為()A. B. C. D.5.設(shè),滿足約束條件,則的最大值是()A. B. C. D.6.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.7.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種8.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}9.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.10.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到11.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種12.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線被圓截得的弦長為2,則的值為__14.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.15.的展開式中,常數(shù)項為______;系數(shù)最大的項是______.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大?。唬?)若,求的值18.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.19.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.20.(12分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動,當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學(xué)期望.21.(12分)已知圓的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.22.(10分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由已知先求出,即,進一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時,則,,所以,,顯然當(dāng)時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時,單調(diào)遞增,當(dāng)時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.2、B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設(shè)直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.3、C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計值為,故選C.4、B【解析】

作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.5、D【解析】

作出不等式對應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.6、C【解析】

根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、C【解析】

根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、C【解析】

先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題.9、A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.10、D【解析】

由可判斷選項A;當(dāng)時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時,,所以B正確;當(dāng)時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.11、C【解析】

先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎(chǔ)題.12、D【解析】

設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標(biāo)代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經(jīng)過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.14、【解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.15、【解析】

求出二項展開式的通項,令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項;求出項的系數(shù),利用作商法可求出系數(shù)最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數(shù)項為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數(shù)項的求解,同時也考查了系數(shù)最大項的求解,涉及展開式通項的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因為,所以,解得或,∵,∴.在中,由余弦定理得,即①又因為,把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【點睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、常考題型.18、(1)證明見解析(2)45°【解析】

(1)設(shè)的中點為,連接,設(shè)的中點為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設(shè)的中點為,連接.設(shè)的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進行求解.19、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當(dāng)時,化為,當(dāng)時,不等式化為,無解;當(dāng)時,不等式化為,解得;當(dāng)時,不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為20、(1)元;(2)32家;(3)分布列見解析;【解析】

(1)根據(jù)頻率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論