2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省泰安市泰山區(qū)泰安一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=sinA.1 B.2 C.3 D.22.下圖是某圓拱形橋一孔圓拱的示意圖,這個圓的圓拱跨度米,拱高米,建造時每隔8米需要用一根支柱支撐,則支柱的高度大約是()A.9.7米 B.9.1米 C.8.7米 D.8.1米3.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡4.若,則下列正確的是()A. B.C. D.5.已知一組數(shù)據(jù)1,3,2,5,4,那么這組數(shù)據(jù)的方差為()A.2 B.3 C.2 D.36.在等差數(shù)列中,,則數(shù)列前項和取最大值時,的值等于()A.12 B.11 C.10 D.97.在等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,則a4?a7的值為()A.6 B.1 C.﹣1 D.﹣68.設(shè)直線l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1與A.-16 B.0或9.已知,則等于()A. B. C. D.310.若,則的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點是所在平面內(nèi)的一點,若,則__________.12.方程的解集是___________13.計算:________14.的內(nèi)角的對邊分別為.若,則的面積為__________.15.已知呈線性相關(guān)的變量,之間的關(guān)系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當(dāng)為時,的值為______.16.如圖,已知,,任意點關(guān)于點的對稱點為,點關(guān)于點的對稱點為,則向量_______(用,表示向量)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),設(shè)其最小值為(1)求;(2)若,求a以及此時的最大值.18.已知圓經(jīng)過,,三點.(1)求圓的標(biāo)準(zhǔn)方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.19.已知數(shù)列為等比數(shù)列,,公比,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,求使的的取值范圍.20.已知圓經(jīng)過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標(biāo);若不存在,請說明理由.21.已知圓,點,直線.(1)求與直線l垂直,且與圓C相切的直線方程;(2)在x軸上是否存在定點B(不同于點A),使得對于圓C上任一點P,為常數(shù)?若存在,試求這個常數(shù)值及所有滿足條件的點B的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

對sin(x+π3【詳解】∵f(x)=sin∴f(x)【點睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.2、A【解析】

以為原點、以為軸,以為軸建立平面直角坐標(biāo)系,設(shè)出圓心坐標(biāo)與半徑,可得圓拱所在圓的方程,將代入圓的方程,可求出支柱的高度【詳解】由圖以為原點、以為軸,以為軸建立平面直角坐標(biāo)系,設(shè)圓心坐標(biāo)為,,,則圓拱所在圓的方程為,,解得,,圓的方程為,將代入圓的方程,得.故選:A【點睛】本題考查了圓的標(biāo)準(zhǔn)方程在生活中的應(yīng)用,需熟記圓的標(biāo)準(zhǔn)方程的形式,屬于基礎(chǔ)題.3、B【解析】

概率的事件可以認(rèn)為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.4、D【解析】

由不等式的性質(zhì)對四個選項逐一判斷,即可得出正確選項,錯誤的選項可以采用特值法進(jìn)行排除.【詳解】A選項不正確,因為若,,則不成立;B選項不正確,若時就不成立;C選項不正確,同B,時就不成立;D選項正確,因為不等式的兩邊加上或者減去同一個數(shù),不等號的方向不變,故選D.【點睛】本題主要考查不等關(guān)系和不等式的基本性質(zhì),求解的關(guān)鍵是熟練掌握不等式的運算性質(zhì).5、C【解析】

先由平均數(shù)的計算公式計算出平均數(shù),再根據(jù)方差的公式計算即可?!驹斀狻坑深}可得x=所以這組數(shù)據(jù)的方差S2故答案選C【點睛】本題考查方差的定義:一般地設(shè)n個數(shù)據(jù):x1,x2,6、C【解析】試題分析:最大,考點:數(shù)列單調(diào)性點評:求解本題的關(guān)鍵是由已知得到數(shù)列是遞減數(shù)列,進(jìn)而轉(zhuǎn)化為尋找最小的正數(shù)項7、D【解析】

由題意利用韋達(dá)定理,等比數(shù)列的性質(zhì),求得a4?a7的值.【詳解】∵等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,∴a2?a9=﹣6,則a4?a7=a2?a9=﹣6,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)及二次方程中韋達(dá)定理的應(yīng)用,考查了分析問題的能力,屬于基礎(chǔ)題.8、B【解析】

通過兩條直線平行的關(guān)系,可建立關(guān)于a的方程,解方程求得結(jié)果?!驹斀狻縧1//解得:a=0或-本題正確選項:B【點睛】本題考察直線位置關(guān)系問題。關(guān)鍵是通過兩直線平行,得到:A19、C【解析】

等式分子分母同時除以即可得解.【詳解】由可得.故選:C.【點睛】本題考查了三角函數(shù)商數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】

由,得,當(dāng)時,即可求出的范圍,根據(jù)幾何概型的公式,即可求解.【詳解】由,得,當(dāng),即當(dāng)時,,所以的概率為.【點睛】本題考查幾何概型的公式,屬基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)為的中點,為的中點,為的中點,由得到,再進(jìn)一步分析即得解.【詳解】如圖,設(shè)為的中點,為的中點,為的中點,因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點睛】本題主要考查向量的運算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.12、或【解析】

方程的根等價于或,分別求兩個三角方程的根可得答案.【詳解】方程或,所以或,所以或.故答案為:或.【點睛】本題考查三角方程的求解,求解時可利用單位圓中的三角函數(shù)線,注意終邊相同角的表示,考查運算求解能力和數(shù)形結(jié)合思想的運用.13、【解析】

用正弦、正切的誘導(dǎo)公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導(dǎo)公式,考查了特殊角的正弦值和正切值.14、【解析】

本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識、基本方法、數(shù)學(xué)式子的變形及運算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點睛】本題涉及正數(shù)開平方運算,易錯點往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細(xì)心計算.15、【解析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應(yīng)用;求線性回歸方程是常考的基礎(chǔ)題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.16、【解析】

先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】

(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況、和討論,根據(jù)二次函數(shù)求最小值的方法求出的最小值的值即可;(2)把代入到第一問的的第二和第三個解析式中,求出的值,代入中得到的解析式,利用配方可得的最大值.【詳解】(1)由題意,函數(shù)∵,∴,若,即,則當(dāng)時,取得最小值,.若,即,則當(dāng)時,取得最小值,.若即,則當(dāng)時,取得最小值,,∴.(2)由(1)及題意,得當(dāng)時,令,解得或(舍去);當(dāng)時,令,解得(舍去),綜上,,此時,則時,取得最大值.【點睛】本題主要考查了利用二次函數(shù)的方法求三角函數(shù)的最值,要求熟練掌握余弦函數(shù)圖象與性質(zhì),其中解答中合理轉(zhuǎn)化為二次函數(shù)的圖象與性質(zhì)進(jìn)行求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于中檔試題.18、(1)(2)30°或90°.【解析】

(1)解法一:將圓的方程設(shè)為一般式,將題干三個點代入圓的方程,解出相應(yīng)的參數(shù)值,即可得出圓的一般方程,再化為標(biāo)準(zhǔn)方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標(biāo),即為圓心坐標(biāo),然后計算為圓的半徑,即可寫出圓的標(biāo)準(zhǔn)方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進(jìn)行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當(dāng)直線的斜率存在時,設(shè)直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關(guān)于的方程,求出的值.結(jié)合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設(shè)圓的方程為,則∴即圓為,∴圓的標(biāo)準(zhǔn)方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標(biāo)準(zhǔn)方程為.(2)①當(dāng)斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當(dāng)斜率存在時,設(shè)直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉(zhuǎn)化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.19、(1);(2)【解析】

(1)利用等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進(jìn)而求得數(shù)列的通項公式.(2)先求得的表達(dá)式,利用裂項求和法求得,解不等式求得的取值范圍.【詳解】解:(1)∵成等差數(shù)列,得,∵等比數(shù)列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【點睛】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,考查裂項求和法,考查不等式的解法,屬于中檔題.20、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解析】

(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標(biāo),再求出圓半徑,從而得圓標(biāo)準(zhǔn)方程;(2)直線斜率存在時,設(shè)方程為,代入圓的方程,得的一元二次方程,同時設(shè)交點為由韋達(dá)定理得,假設(shè)定點存在,設(shè)其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當(dāng)直線的斜率存在時,設(shè)直線的斜率為,則過點的直線方程為,故由,整理得,設(shè),設(shè),則,,,即,當(dāng)斜率不存在時,成立,∴在直線上存在定點,使得恒成立【點睛】本題考查求圓的標(biāo)準(zhǔn)方程,考查與圓有關(guān)的定點問題.求圓的標(biāo)準(zhǔn)方程可先求出圓心坐標(biāo)和圓的半徑,然后得標(biāo)準(zhǔn)方程,注意圓心一定在弦的中垂線上.定點問題,通常用設(shè)而不求思想,即設(shè)直線方程與圓方程聯(lián)立消元后得一元二次方程,設(shè)直線與圓的交點坐標(biāo)為,由韋達(dá)定理得,然后設(shè)定點坐標(biāo)如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論