版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省八市重點高中聯(lián)盟“領(lǐng)軍考試”高三學(xué)情摸底新高考數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,則().A. B.C. D.2.設(shè)集合,,則()A. B.C. D.3.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.設(shè)集合,,則().A. B.C. D.5.設(shè),,是非零向量.若,則()A. B. C. D.6.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.7.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.8.已知向量,,若,則()A. B. C. D.9.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.10.已知,,,則,,的大小關(guān)系為()A. B. C. D.11.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.12.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,則的值為________.14.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.15.某城市為了解該市甲、乙兩個旅游景點的游客數(shù)量情況,隨機抽取了這兩個景點20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多______天.16.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),當(dāng)時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.18.(12分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點,AC,BD交于點O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.19.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.20.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標(biāo)有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.21.(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時,.22.(10分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.2、D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎(chǔ)題.3、C【解析】
由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對應(yīng)點坐標(biāo)即得【詳解】解析:,,對應(yīng)點為,在第三象限.故選:C.【點睛】本題考查復(fù)數(shù)的除法運算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.4、D【解析】
根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,5、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.6、D【解析】
整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數(shù),所以,則,故選:D【點睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運算.7、C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.8、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標(biāo)運算,屬于基礎(chǔ)題.9、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.10、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對數(shù)式比較大小,屬于中檔題.11、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.12、B【解析】
解:當(dāng)直線過點時,最大,故選B二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】
由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】試題分析:由坐標(biāo)系可知考點:復(fù)數(shù)運算15、72【解析】
根據(jù)給定的莖葉圖,得到游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數(shù)中,游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應(yīng)用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設(shè)點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學(xué)生的運算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】
(1)由題意得到關(guān)于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時,函數(shù)取得極小值,極小值為.當(dāng)時,有極大值3.【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)證明見解析(2)【解析】
(1)連接OE,利用三角形中位線定理得到OE∥PC,即可證出OE∥平面PBC;(2)由E是PA的中點,,求出S△ABD,即可求解.【詳解】(1)證明:如圖所示:∵點O,E分別是AC,PA的中點,∴OE是△PAC的中位線,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD為菱形,∠BAD=60°,∴S△ABD,∴三棱錐E﹣PBD的體積.【點睛】本題考查空間線、面位置關(guān)系,證明直線與平面平行以及求三棱錐的體積,注意等體積法的應(yīng)用,考查邏輯推理、數(shù)學(xué)計算能力,屬于基礎(chǔ)題.19、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式的證明,考查不等式的性質(zhì)的應(yīng)用.20、;.【解析】
設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于常考題.21、(1)(2)見解析【解析】
(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電梯安全知識競賽組織與實施合同3篇
- 二零二五版礦山勞務(wù)合同范本:礦山安全生產(chǎn)監(jiān)督協(xié)議3篇
- 基于2025年度財務(wù)軟件系統(tǒng)的定制開發(fā)合同3篇
- 2025年度臨時安保服務(wù)勞務(wù)合同實施細(xì)則4篇
- 2025年度光伏電站變壓器供貨與安裝服務(wù)合同3篇
- 2025年度環(huán)保節(jié)能照明設(shè)備研發(fā)與推廣合同3篇
- 2024-2025學(xué)年高中語文第一課走進漢語的世界3四方異聲-普通話和方言練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2025年度水路貨物運輸貨物保險理賠代理合同(GF定制版)
- 2025年校園食堂食品安全追溯原料采購管理服務(wù)合同3篇
- 二零二四年在建工業(yè)地產(chǎn)轉(zhuǎn)讓合同范本3篇
- 英語名著閱讀老人與海教學(xué)課件(the-old-man-and-the-sea-)
- 學(xué)校食品安全知識培訓(xùn)課件
- 全國醫(yī)學(xué)博士英語統(tǒng)一考試詞匯表(10000詞全) - 打印版
- 最新《會計職業(yè)道德》課件
- DB64∕T 1776-2021 水土保持生態(tài)監(jiān)測站點建設(shè)與監(jiān)測技術(shù)規(guī)范
- ?中醫(yī)院醫(yī)院等級復(fù)評實施方案
- 數(shù)學(xué)-九宮數(shù)獨100題(附答案)
- 理正深基坑之鋼板樁受力計算
- 學(xué)校年級組管理經(jīng)驗
- 10KV高壓環(huán)網(wǎng)柜(交接)試驗
- 未來水電工程建設(shè)抽水蓄能電站BIM項目解決方案
評論
0/150
提交評論