2024屆福建省福州市延安中學中考數(shù)學四模試卷含解析_第1頁
2024屆福建省福州市延安中學中考數(shù)學四模試卷含解析_第2頁
2024屆福建省福州市延安中學中考數(shù)學四模試卷含解析_第3頁
2024屆福建省福州市延安中學中考數(shù)學四模試卷含解析_第4頁
2024屆福建省福州市延安中學中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省福州市延安中學中考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離2.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°3.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°4.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.5.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF6.估計+1的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間7.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.18.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.9.的相反數(shù)是()A. B.- C. D.-10.點A(-1,y1),B(-2,y2)在反比例函數(shù)y=2x的圖象上,則A.y1>y2 B.y1=y2 C.二、填空題(共7小題,每小題3分,滿分21分)11.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.12.A,B兩市相距200千米,甲車從A市到B市,乙車從B市到A市,兩車同時出發(fā),已知甲車速度比乙車速度快15千米/小時,且甲車比乙車早半小時到達目的地.若設(shè)乙車的速度是x千米/小時,則根據(jù)題意,可列方程____________.13.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.14.如圖,在平行四邊形紙片上做隨機扎針實驗,則針頭扎在陰影區(qū)域的概率為__________.15.如圖AB是直徑,C、D、E為圓周上的點,則______.16.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.17.當x=_________時,分式的值為零.三、解答題(共7小題,滿分69分)18.(10分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?19.(5分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經(jīng)過A、B兩點,并與x軸交于另一點C(點C點A的右側(cè)),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內(nèi),過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.20.(8分)觀察下列各式:①②③由此歸納出一般規(guī)律__________.21.(10分)某校運動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.(1)求A、B兩種獎品的單價各是多少元?(2)學校計劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當購買A種獎品多少件時,費用W的值最少.22.(10分)某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.求出y與x之間的函數(shù)關(guān)系式;寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?23.(12分)如圖,點A的坐標為(﹣4,0),點B的坐標為(0,﹣2),把點A繞點B順時針旋轉(zhuǎn)90°得到的點C恰好在拋物線y=ax2上,點P是拋物線y=ax2上的一個動點(不與點O重合),把點P向下平移2個單位得到動點Q,則:(1)直接寫出AB所在直線的解析式、點C的坐標、a的值;(2)連接OP、AQ,當OP+AQ獲得最小值時,求這個最小值及此時點P的坐標;(3)是否存在這樣的點P,使得∠QPO=∠OBC,若不存在,請說明理由;若存在,請你直接寫出此時P點的坐標.24.(14分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內(nèi)填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)兩圓的位置關(guān)系、直線和圓的位置關(guān)系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內(nèi)含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內(nèi)切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關(guān)系:設(shè)兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內(nèi)切;當0≤d<R-r(R>r)時兩圓內(nèi)含.2、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點:眾數(shù);算術(shù)平均數(shù).3、D【解析】

直接利用三角板的特點,結(jié)合平行線的性質(zhì)得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,

∵DE∥CB,

∴∠BDE=∠ABC=45°,

∴∠BDF=45°-30°=15°.

故選D.【點睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.4、C【解析】

根據(jù)題意可以寫出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.5、C【解析】

根據(jù)全等三角形的判定與性質(zhì),可得∠ACB=∠DBE的關(guān)系,根據(jù)三角形外角的性質(zhì),可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質(zhì),熟悉掌握是關(guān)鍵.6、B【解析】分析:直接利用2<<3,進而得出答案.詳解:∵2<<3,∴3<+1<4,故選B.點睛:此題主要考查了估算無理數(shù)的大小,正確得出的取值范圍是解題關(guān)鍵.7、A【解析】

根據(jù)兩個負數(shù)比較大小,絕對值大的負數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負數(shù),注意兩個負數(shù)比較大小,絕對值大的負數(shù)反而?。?、D【解析】試題分析:根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.9、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.10、C【解析】試題分析:對于反比例函數(shù)y=kx,當k>0時,在每一個象限內(nèi),y隨x的增大而減小,根據(jù)題意可得:-1>-2,則y考點:反比例函數(shù)的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.12、200x【解析】

直接利用甲車比乙車早半小時到達目的地得出等式即可.【詳解】解:設(shè)乙車的速度是x千米/小時,則根據(jù)題意,可列方程:200x故答案為:200x【點睛】此題主要考查了由實際問題抽象出分式方程,正確表示出兩車所用時間是解題關(guān)鍵.13、【解析】

過點作于,根據(jù)三角形的性質(zhì)及三角形內(nèi)角和定理可計算再由旋轉(zhuǎn)可得,,根據(jù)三角形外角和性質(zhì)計算,根據(jù)含角的直角三角形的三邊關(guān)系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉(zhuǎn),使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質(zhì)的綜合應用,要熟練掌握等腰三角形的性質(zhì),含角的直角三角形的三邊關(guān)系,旋轉(zhuǎn)圖形的性質(zhì).14、【解析】

先根據(jù)平行四邊形的性質(zhì)求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發(fā)現(xiàn):圖中陰影部分面積=S四邊形,∴針頭扎在陰影區(qū)域內(nèi)的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質(zhì),用到的知識點為:概率=相應的面積與總面積之比.15、90°【解析】

連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,

根據(jù)圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.16、1【解析】分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關(guān)鍵.17、2【解析】

根據(jù)若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)A、B兩種品牌得化妝品每套進價分別為100元,75元;(2)A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元【解析】

(1)求A、B兩種品牌的化妝品每套進價分別為多少元,可設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.根據(jù)兩種購買方法,列出方程組解方程;(2)根據(jù)題意列出不等式,求出m的范圍,再用代數(shù)式表示出利潤,即可得出答案.【詳解】(1)設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.得解得:,答:A、B兩種品牌得化妝品每套進價分別為100元,75元.(2)設(shè)A種品牌得化妝品購進m套,則B種品牌得化妝品購進(50﹣m)套.根據(jù)題意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利潤是30m+20(50﹣m)=1000+10m,當m取最大10時,利潤最大,最大利潤是1000+100=1100,所以A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元.【點睛】本題考查一元一次不等式組的應用,將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,讀懂題列出不等式關(guān)系式即可求解.19、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點,∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點,∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點作NH⊥x軸于點H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點,∴MH=2-m.當△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點的坐標,然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點C的坐標.(2)求出線段PE長度的表達式,設(shè)D點橫坐標為t,則可以將PE表示為關(guān)于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質(zhì)和勾股定理,將直線l的存在性問題轉(zhuǎn)化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應Q點的坐標.“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.20、xn+1-1【解析】試題分析:觀察其右邊的結(jié)果:第一個是﹣1;第二個是﹣1;…依此類推,則第n個的結(jié)果即可求得.試題解析:(x﹣1)(++…x+1)=.故答案為.考點:平方差公式.21、(1)A、B兩種獎品的單價各是10元、15元;(2)W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當購買A種獎品75件時,費用W的值最少.【解析】

(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意可以列出相應的方程組,從而可以求得A、B兩種獎品的單價各是多少元;(2)根據(jù)題意可以得到W(元)與m(件)之間的函數(shù)關(guān)系式,然后根據(jù)A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,可以求得m的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可解答本題.【詳解】(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意得:解得:.答:A種獎品的單價是10元、B種獎品的單價是15元.(2)由題意可得:W=10m+15(100﹣m)=﹣5m+1.∵A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,∴m≤3(100﹣m),解得:m≤75∴當m=75時,W取得最小值,此時W=﹣5×75+1=2.答:W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當購買A種獎品75件時,費用W的值最少.【點睛】本題考查了一次函數(shù)的應用、二元一次方程組的應用、一元一次不等式的應用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)的性質(zhì)解答.22、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】

(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得:,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點睛】本題考查了二次函數(shù)的應用:利用二次函數(shù)解決利潤問題,先利用利潤=每件的利潤乘以銷售量構(gòu)建二次函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求二次函數(shù)的最值,一定要注意自變量x的取值范圍.23、(1)a=;(2)OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),【解析】

(1)利用待定系數(shù)法求出直線AB解析式,根據(jù)旋轉(zhuǎn)性質(zhì)確定出C的坐標,代入二次函數(shù)解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當Q在線段AB上時,求出OP+AQ的最小值,并求出此時P的坐標即可;(3)存在這樣的點P,使得∠QPO=∠OBC,如備用圖所示,延長PQ交x軸于點H,設(shè)此時點P的坐標為(m,m2),根據(jù)正切函數(shù)定義確定出m的值,即可確定出P的坐標.【詳解】解:(1)設(shè)直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直線AB的解析式為y=﹣x﹣2,根據(jù)題意得:點C的坐標為(2,2),把C(2,2)代入二次函數(shù)解析式得:a=;(2)連接BQ,則易得PQ∥OB,且PQ=OB,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論