北京市燕山2024屆中考數(shù)學模試卷含解析_第1頁
北京市燕山2024屆中考數(shù)學模試卷含解析_第2頁
北京市燕山2024屆中考數(shù)學模試卷含解析_第3頁
北京市燕山2024屆中考數(shù)學模試卷含解析_第4頁
北京市燕山2024屆中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市燕山2024屆中考數(shù)學模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.a、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a2.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°3.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a34.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形5.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.6.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣7.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個8.實數(shù)4的倒數(shù)是()A.4 B. C.﹣4 D.﹣9.如圖,已知,用尺規(guī)作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點10.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為萬千克,根據題意,列方程為A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,10塊相同的小長方形墻磚拼成一個大長方形,設小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.12.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.13.如圖,點D在的邊上,已知點E、點F分別為和的重心,如果,那么兩個三角形重心之間的距離的長等于________.14.若與是同類項,則的立方根是.15.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.16.計算:(a2)2=_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.18.(8分)如圖,某校數(shù)學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數(shù)據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7319.(8分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=020.(8分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.21.(8分)先化簡,,其中x=.22.(10分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.23.(12分)(1)計算:sin45°(2)解不等式組:24.如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內,y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.2、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.3、D【解析】

根據平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.4、B【解析】

如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據是:對應邊成比例,對應角相等,兩個條件必須同時具備.5、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.6、C【解析】

由雙曲線中k的幾何意義可知據此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關于反比例函數(shù)的題目,需結合反比例函數(shù)中系數(shù)k的幾何意義解答;7、C【解析】

由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.8、B【解析】

根據互為倒數(shù)的兩個數(shù)的乘積是1,求出實數(shù)4的倒數(shù)是多少即可.【詳解】解:實數(shù)4的倒數(shù)是:1÷4=.故選:B.【點睛】此題主要考查了一個數(shù)的倒數(shù)的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數(shù)的兩個數(shù)的乘積是1.9、D【解析】

根據作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、伲謩e交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫弧.

故選:D.【點睛】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.10、A【解析】

根據題意可得等量關系:原計劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【點睛】本題考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個方程即可.【詳解】根據圖示可得,故答案是:.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是看懂圖示,分別表示出長方形的長和寬.12、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.13、4【解析】

連接并延長交于G,連接并延長交于H,根據三角形的重心的概念可得,,,,即可求出GH的長,根據對應邊成比例,夾角相等可得,根據相似三角形的性質即可得答案.【詳解】如圖,連接并延長交于G,連接并延長交于H,∵點E、F分別是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案為:4【點睛】本題考查了三角形重心的概念和性質及相似三角形的判定與性質,三角形的重心是三角形中線的交點,三角形的重心到頂點的距離等于到對邊中點的距離的2倍.14、2.【解析】試題分析:若與是同類項,則:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案為2.考點:2.立方根;2.合并同類項;3.解二元一次方程組;4.綜合題.15、17【解析】

根據餅狀圖求出25元所占比重為20%,再根據加權平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數(shù)的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.16、a1.【解析】

根據冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.三、解答題(共8題,共72分)17、(1);(2)P在第二象限,Q在第三象限.【解析】試題分析:(1)求出點B坐標即可解決問題;(2)結論:P在第二象限,Q在第三象限.利用反比例函數(shù)的性質即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數(shù)的解析式為.(2)結論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數(shù)y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數(shù)法、反比例函數(shù)的性質、坐標與圖形的變化等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.18、AD的長約為225m,大樓AB的高約為226m【解析】

首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數(shù)的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大樓AB的高度約為226m,AD的長約為225m.【點睛】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數(shù)形結合思想與方程思想的應用.19、1【解析】

首先運用乘法分配律將所求的代數(shù)式去括號,然后再合并化簡,最后整體代入求解.【詳解】解:(﹣2)÷==x2﹣3﹣2x+2=x2﹣2x﹣1,∵x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【點睛】分式混合運算要注意先去括號;分子、分母能因式分解的先因式分解;除法要統(tǒng)一為乘法運算.注意整體代入思想在代數(shù)求值計算中的應用.20、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】

(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據平行線的性質得到∠4=∠1,根據全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質,同角的余角相等,等腰三角形的性質,平行四邊形的判定和性質,菱形的判定,判斷出△ABO≌△CDE是解本題的關鍵.21、【解析】

根據分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關鍵.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論