湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第1頁(yè)
湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第2頁(yè)
湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第3頁(yè)
湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第4頁(yè)
湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省長(zhǎng)沙廣益中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.2017年“智慧天津”建設(shè)成效顯著,互聯(lián)網(wǎng)出口帶寬達(dá)到17200吉比特每秒.將17200用科學(xué)記數(shù)法表示應(yīng)為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×1052.化簡(jiǎn):-,結(jié)果正確的是()A.1 B. C. D.3.如圖是二次函數(shù)的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>54.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.125.計(jì)算(x-2)(x+5)的結(jié)果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-106.小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上B.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等D.以上均不正確7.下列方程中有實(shí)數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.8.下列計(jì)算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=9.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.10.如圖,數(shù)軸上的三點(diǎn)所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點(diǎn)的位置應(yīng)該在()A.點(diǎn)的左邊 B.點(diǎn)與點(diǎn)之間 C.點(diǎn)與點(diǎn)之間 D.點(diǎn)的右邊二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,菱形ABCD的對(duì)角線的長(zhǎng)分別為2和5,P是對(duì)角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.12.計(jì)算:(π﹣3)0+(﹣)﹣1=_____.13.一天晚上,小偉幫助媽媽清洗兩個(gè)只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機(jī)地搭配在一起,則顏色搭配正確的概率是_____.14.內(nèi)接于圓,設(shè),圓的半徑為,則所對(duì)的劣弧長(zhǎng)為_____(用含的代數(shù)式表示).15.如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)B與原點(diǎn)O重合,與反比例函數(shù)y=的圖像交于E、F兩點(diǎn),若△DEF的面積為,則k的值_______.16.用48米長(zhǎng)的竹籬笆在空地上,圍成一個(gè)綠化場(chǎng)地,現(xiàn)有兩種設(shè)計(jì)方案,一種是圍成正方形的場(chǎng)地;另一種是圍成圓形場(chǎng)地.現(xiàn)請(qǐng)你選擇,圍成________(圓形、正方形兩者選一)場(chǎng)在面積較大.三、解答題(共8題,共72分)17.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).18.(8分)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想.拓展探究已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF=S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)19.(8分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說明理由.20.(8分)如圖,過點(diǎn)A(2,0)的兩條直線,分別交y軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.求點(diǎn)B的坐標(biāo);若△ABC的面積為4,求的解析式.21.(8分)如圖,拋物線y=ax2+bx+c與x軸的交點(diǎn)分別為A(﹣6,0)和點(diǎn)B(4,0),與y軸的交點(diǎn)為C(0,3).(1)求拋物線的解析式;(2)點(diǎn)P是線段OA上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過P作平行于y軸的直線與AC交于點(diǎn)Q,點(diǎn)D、M在線段AB上,點(diǎn)N在線段AC上.①是否同時(shí)存在點(diǎn)D和點(diǎn)P,使得△APQ和△CDO全等,若存在,求點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點(diǎn)M的坐標(biāo).22.(10分)如圖,AB=16,O為AB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點(diǎn)P,Q,且點(diǎn)P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時(shí),求的長(zhǎng)(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.23.(12分)深圳某書店為了迎接“讀書節(jié)”制定了活動(dòng)計(jì)劃,以下是活動(dòng)計(jì)劃書的部分信息:“讀書節(jié)“活動(dòng)計(jì)劃書書本類別科普類文學(xué)類進(jìn)價(jià)(單位:元)1812備注(1)用不超過16800元購(gòu)進(jìn)兩類圖書共1000本;科普類圖書不少于600本;…(1)已知科普類圖書的標(biāo)價(jià)是文學(xué)類圖書標(biāo)價(jià)的1.5倍,若顧客用540元購(gòu)買的圖書,能單獨(dú)購(gòu)買科普類圖書的數(shù)量恰好比單獨(dú)購(gòu)買文學(xué)類圖書的數(shù)量少10本,請(qǐng)求出兩類圖書的標(biāo)價(jià);經(jīng)市場(chǎng)調(diào)査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對(duì)圖書銷售的影響,便調(diào)整了銷售方案,科普類圖書每本標(biāo)價(jià)降低a(0<a<5)元銷售,文學(xué)類圖書價(jià)格不變,那么書店應(yīng)如何進(jìn)貨才能獲得最大利潤(rùn)?24.某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖?,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí)內(nèi);(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將17200用科學(xué)記數(shù)法表示為1.72×1.

故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、B【解析】

先將分母進(jìn)行通分,化為(x+y)(x-y)的形式,分子乘上相應(yīng)的分式,進(jìn)行化簡(jiǎn).【詳解】【點(diǎn)睛】本題考查的是分式的混合運(yùn)算,解題的關(guān)鍵就是熟練掌握運(yùn)算規(guī)則.3、D【解析】利用二次函數(shù)的對(duì)稱性,可得出圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo),結(jié)合圖象可得出的解集:由圖象得:對(duì)稱軸是x=2,其中一個(gè)點(diǎn)的坐標(biāo)為(1,0),∴圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.4、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.5、C【解析】

根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則進(jìn)行計(jì)算即可.【詳解】x-2x+5故選:C.【點(diǎn)睛】考查多項(xiàng)式乘以多項(xiàng)式,掌握多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則是解題的關(guān)鍵.6、A【解析】

過兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,因?yàn)槭莾砂淹耆嗤拈L(zhǎng)方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,∵兩把完全相同的長(zhǎng)方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上),故選A.【點(diǎn)睛】本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上這一判定定理.7、C【解析】

A、B是一元二次方程可以根據(jù)其判別式判斷其根的情況;C是無理方程,容易看出沒有實(shí)數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實(shí)數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實(shí)數(shù)根;C.x=﹣1是方程的根;D.當(dāng)x=1時(shí),分母x2-1=0,無實(shí)數(shù)根.故選:C.【點(diǎn)睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關(guān)鍵是針對(duì)不同的方程進(jìn)行分類討論.8、D【解析】

各項(xiàng)中每項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】解:A.原式=8,錯(cuò)誤;B.原式=2+4,錯(cuò)誤;C.原式=1,錯(cuò)誤;D.原式=x6y﹣3=,正確.故選D.【點(diǎn)睛】此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、C【解析】

根據(jù)全等三角形的判定定理進(jìn)行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對(duì)應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個(gè)小三角形全等,故本選項(xiàng)符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點(diǎn)睛】本題考查了全等三角形的判定,注意三角形邊和角的對(duì)應(yīng)關(guān)系是關(guān)鍵.10、C【解析】

根據(jù)絕對(duì)值是數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離,分別判斷出點(diǎn)A、B、C到原點(diǎn)的距離的大小,從而得到原點(diǎn)的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點(diǎn)A到原點(diǎn)的距離最大,點(diǎn)C其次,點(diǎn)B最小,

又∵AB=BC,

∴原點(diǎn)O的位置是在點(diǎn)B、C之間且靠近點(diǎn)B的地方.

故選:C.【點(diǎn)睛】此題考查了實(shí)數(shù)與數(shù)軸,理解絕對(duì)值的定義是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)題意可得陰影部分的面積等于△ABC的面積,因?yàn)椤鰽BC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設(shè)AP,EF交于O點(diǎn),∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.12、-1【解析】

先計(jì)算0指數(shù)冪和負(fù)指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點(diǎn)睛】考查了0指數(shù)冪和負(fù)指數(shù)冪,解題關(guān)鍵是運(yùn)用任意數(shù)的0次冪為1,a-1=.13、【解析】分析:根據(jù)概率的計(jì)算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯(cuò)誤的可能,進(jìn)而求出各自的概率即可.詳解:用A和a分別表示第一個(gè)有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個(gè)有蓋茶杯的杯蓋和茶杯、經(jīng)過搭配所能產(chǎn)生的結(jié)果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點(diǎn)睛:此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、或【解析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】解:當(dāng)0°<x°≤90°時(shí),如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對(duì)的劣弧長(zhǎng)=,

當(dāng)90°<x°≤180°時(shí),同理可得,∠OBC所對(duì)的劣弧長(zhǎng)=.

故答案為:或.【點(diǎn)睛】本題考查了三角形的外接圓與外心、弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式、圓周角定理是解題的關(guān)鍵.15、1【解析】

利用對(duì)稱性可設(shè)出E、F的兩點(diǎn)坐標(biāo),表示出△DEF的面積,可求出k的值.【詳解】解:設(shè)AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點(diǎn)F(,2)代入解得:k=1,故答案為1.【點(diǎn)睛】本題主要考查反比例函數(shù)與正方形和三角形面積的運(yùn)用,表示出E和F的坐標(biāo)是關(guān)鍵.16、圓形【解析】

根據(jù)竹籬笆的長(zhǎng)度可知所圍成的正方形的邊長(zhǎng),進(jìn)而可計(jì)算出所圍成的正方形的面積;根據(jù)圓的周長(zhǎng)公式,可知所圍成的圓的半徑,進(jìn)而將圓的面積計(jì)算出來,兩者進(jìn)行比較.【詳解】圍成的圓形場(chǎng)地的面積較大.理由如下:設(shè)正方形的邊長(zhǎng)為a,圓的半徑為R,∵竹籬笆的長(zhǎng)度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長(zhǎng)為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場(chǎng)地的面積較大.故答案為:圓形.【點(diǎn)睛】此題主要考查實(shí)數(shù)的大小的比較在實(shí)際生活中的應(yīng)用,所以學(xué)生在學(xué)這一部分時(shí)一定要聯(lián)系實(shí)際,不能死學(xué).三、解答題(共8題,共72分)17、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】

(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.18、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點(diǎn)N,過E作EM⊥AC交AC延長(zhǎng)線于M,過C作CF⊥AB交AB于點(diǎn)F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點(diǎn)D作DM⊥BC于M,過點(diǎn)A作AN⊥CE交EC的延長(zhǎng)線于N,

∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時(shí)S△DCF1=S△BDE;

過點(diǎn)D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點(diǎn)D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點(diǎn)F1也是所求的點(diǎn),

∵∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長(zhǎng)為3或2.19、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短;(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時(shí),作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時(shí),AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當(dāng)x=﹣=1時(shí),EC的長(zhǎng)最小,此時(shí)EC=18,∴AC=EC=9,∴AC的最小值為9.【點(diǎn)睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問題,屬于中考?jí)狠S題.20、(1)(0,3);(2).【解析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點(diǎn)B的坐標(biāo);(2)由=BC?OA,得到BC=4,進(jìn)而得到C(0,-1).設(shè)的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點(diǎn)B的坐標(biāo)是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設(shè)的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點(diǎn):一次函數(shù)的性質(zhì).21、(1)y=﹣x2﹣x+3;(2)①點(diǎn)D坐標(biāo)為(﹣,0);②點(diǎn)M(,0).【解析】

(1)應(yīng)用待定系數(shù)法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點(diǎn)D坐標(biāo),證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(diǎn)(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點(diǎn)D,使得△APQ和△CDO全等,當(dāng)D在線段OA上,∠QAP=∠DCO,AP=OC=3時(shí),△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點(diǎn)D坐標(biāo)為(-,0).由對(duì)稱性,當(dāng)點(diǎn)D坐標(biāo)為(,0)時(shí),由點(diǎn)B坐標(biāo)為(4,0),此時(shí)點(diǎn)D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點(diǎn)D坐標(biāo)為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點(diǎn)N為AC中點(diǎn).∴DN時(shí)△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點(diǎn)M(,0)【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關(guān)知識(shí).解答時(shí),注意數(shù)形結(jié)合.22、(1)詳見解析;(2);(3)4<OC<1.【解析】

(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點(diǎn)共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長(zhǎng)公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點(diǎn),結(jié)合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點(diǎn)共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長(zhǎng)=,(3)解:設(shè)點(diǎn)M為Rt△APO的外心,則M為OA的中點(diǎn),

∵OA=1,

∴OM=4,

∴當(dāng)△APO的外心在扇形COD的內(nèi)部時(shí),OM<OC,

∴OC的取值范圍為4<OC<1.【點(diǎn)睛】本題考查了三角形的外接圓與外心、弧長(zhǎng)的計(jì)算、扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點(diǎn)是解題的關(guān)鍵.23、(1)A類圖書的標(biāo)價(jià)為27元,B類圖書的標(biāo)價(jià)為18元;(2)當(dāng)A類圖書每本降價(jià)少于3元時(shí),A類圖書購(gòu)進(jìn)800本,B類圖書購(gòu)進(jìn)200本,利潤(rùn)最大;當(dāng)A類圖書每本降價(jià)大于等于3元,小于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論