2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題含解析_第1頁
2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題含解析_第2頁
2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題含解析_第3頁
2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題含解析_第4頁
2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆黑龍江省哈爾濱市名校九上數(shù)學期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖所示,已知為的直徑,直線為圓的一條切線,在圓周上有一點,且使得,連接,則的大小為()A. B. C. D.2.正八邊形的中心角為()A.45° B.60° C.80° D.90°3.一元二次方程的常數(shù)項是()A.﹣4 B.﹣3 C.1 D.24.某校進行體操隊列訓練,原有8行10列,后增加40人,使得隊伍增加的行數(shù)、列數(shù)相同,你知道增加了多少行或多少列嗎?設增加了行或列,則列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+405.拋物線y=﹣(x﹣)2﹣2的頂點坐標是()A.(,2) B.(﹣,2) C.(﹣,﹣2) D.(,﹣2)6.如圖,小明在打乒乓球時,為使球恰好能過網(wǎng)(設網(wǎng)高AB=15cm),且落在對方區(qū)域桌子底線C處,已知小明在自己桌子底線上方擊球,則他擊球點距離桌面的高度DE為()A.15cm B.20cm C.25cm D.30cm7.附城二中到聯(lián)安鎮(zhèn)為5公里,某同學騎車到達,那么時間t與速度(平均速度)v之間的函數(shù)關系式是()A.v=5t B.v=t+5 C.v= D.v=8.某車的剎車距離y(m)與開始剎車時的速度x(m/s)之間滿足二次函數(shù)(x>0),若該車某次的剎車距離為5m,則開始剎車時的速度為()A.40m/s B.20m/sC.10m/s D.5m/s9.在平面直角坐標系中,開口向下的拋物線y=ax2+bx+c的一部分圖象如圖所示,它與x軸交于A(1,0),與y軸交于點B(0,3),對稱軸是直線x=-1.則下列結論正確的是()A.a(chǎn)c>0 B.b2-4ac=0 C.a(chǎn)-b+c<0 D.當-3<x<1時,y>010.如圖,是的直徑,點在上,,則的度數(shù)為()A. B. C. D.11.下列各數(shù)中,屬于無理數(shù)的是()A. B. C. D.12.已知=3,則代數(shù)式的值是()A. B. C. D.二、填空題(每題4分,共24分)13.圓錐的母線長是5cm,底面半徑長是3cm,它的側面展開圖的圓心角是____.14.如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點D為△ABC內一點,∠BAD=15°,AD=6cm,連接BD,將△ABD繞點A逆時針方向旋轉,使AB與AC重合,點D的對應點E,連接DE,DE交AC于點F,則CF的長為________cm.15.如圖,△ABC是⊙O的內接三角形,∠A=120°,過點C的圓的切線交BO于點P,則∠P的度數(shù)為_____.16.如圖,△ABC中,∠ACB=90°,∠BAC=20°,點O是AB的中點,將OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,當△ACP為等腰三角形時,α的值為_____.17.反比例函數(shù)的圖象經(jīng)過點,,點是軸上一動點.當?shù)闹底钚r,點的坐標是__________.18.如圖,四邊形ABCD內接于⊙O,連結AC,若∠BAC=35°,∠ACB=40°,則∠ADC=_____°.三、解答題(共78分)19.(8分)在平面直角坐標系xOy中,有任意三角形,當這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫“和諧三角形”,這條邊叫“和諧邊”,這條中線的長度叫“和諧距離”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),這個點中,能與點O組成“和諧三角形”的點是,“和諧距離”是;(2)連接BD,點M,N是BD上任意兩個動點(點M,N不重合),點E是平面內任意一點,△EMN是以MN為“和諧邊”的“和諧三角形”,求點E的橫坐標t的取值范圍;(3)已知⊙O的半徑為2,點P是⊙O上的一動點,點Q是平面內任意一點,△OPQ是“和諧三角形”,且“和諧距離”是2,請描述出點Q所在位置.20.(8分)隨著傳統(tǒng)的石油、煤等自然資源逐漸消耗殆盡,風力、核能、水電等一批新能源被廣泛使用.現(xiàn)在山頂?shù)囊粔K平地上建有一座風車,山的斜坡的坡度,長是100米,在山坡的坡底處測得風車頂端的仰角為,在山坡的坡頂處測得風車頂端的仰角為,請你計算風車的高度.(結果保留根號)21.(8分)如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.(1)求證:CD是⊙O的切線;(2)∠C=45°,⊙O的半徑為2,求陰影部分面積.22.(10分)如圖,在社會實踐活動中,某數(shù)學興趣小組想測量在樓房CD頂上廣告牌DE的高度,他們先在點A處測得廣告牌頂端E的仰角為60°,底端D的仰角為30°,然后沿AC方向前行20m,到達B點,在B處測得D的仰角為45°(C,D,E三點在同一直線上).請你根據(jù)他們的測量數(shù)據(jù)計算這廣告牌DE的高度(結果保留小數(shù)點后一位,參考數(shù)據(jù):,).23.(10分)如圖,已知四邊形ABCD是平行四邊形.(1)尺規(guī)作圖:按下列要求完成作圖;(保留作圖痕跡,請標注字母)①連AC;②作AC的垂直平分線交BC、AD于E、F;③連接AE、CF;(2)判斷四邊形AECF的形狀,并說明理由.24.(10分)如圖,為⊙的直徑,為⊙上一點,為的中點.過點作直線的垂線,垂足為,連接.(1)求證:;(2)與⊙有怎樣的位置關系?請說明理由.25.(12分)如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度.26.如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點A(4,n),AB⊥x軸,垂足為B.(1)求k的值;(2)點C在AB上,若OC=AC,求AC的長;(3)點D為x軸正半軸上一點,在(2)的條件下,若S△OCD=S△ACD,求點D的坐標.

參考答案一、選擇題(每題4分,共48分)1、C【分析】連接OB,由題意可知,△COB是等邊三角形,即可求得∠C,再由三角形內角和求得∠BAC,最后根據(jù)切線的性質和余角的定義解答即可.【詳解】解:如圖:連接OB∵為的直徑∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等邊三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直線為圓的一條切線∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案為C.【點睛】本題主要考查了圓的性質、等邊三角形以及切線的性質等知識點,根據(jù)題意說明△COB是等邊三角形是解答本題的關鍵.2、A【分析】根據(jù)中心角是正多邊形的外接圓相鄰的兩個半徑的夾角,即可求解.【詳解】∵360°÷8=45°,∴正八邊形的中心角為45°,故選:A.【點睛】本題主要考查正八邊形的中心角的定義,理解正八邊形的外接圓相鄰的兩個半徑的夾角是中心角,是解題的關鍵.3、A【分析】一元二次方程ax2+bx+c=0(a,b,c是常數(shù)且a≠0)中a、b、c分別是二次項系數(shù)、一次項系數(shù)、常數(shù)項.【詳解】解:一元二次方程的常數(shù)項是﹣4,故選A.【點睛】本題考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a、b、c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.4、D【解析】增加了行或列,現(xiàn)在是行,列,所以(8+)(10+)=8×10+40.5、D【分析】根據(jù)二次函數(shù)的頂點式的特征寫出頂點坐標即可.【詳解】因為y=﹣(x﹣)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(,﹣2).故選:D.【點睛】此題考查的是求二次函數(shù)的頂點坐標,掌握二次函數(shù)的頂點式中的頂點坐標是解決此題的關鍵.6、D【分析】證明△CAB∽△CDE,然后利用相似比得到DE的長.【詳解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故選:D.【點睛】本題考查了相似三角形的應用,用相似三角形對應邊的比相等的性質求物體的高度.7、C【分析】根據(jù)速度=路程÷時間即可寫出時間t與速度(平均速度)v之間的函數(shù)關系式.【詳解】∵速度=路程÷時間,∴v=.故選C.【點睛】此題主要考查反比例函數(shù)的定義,解題的關鍵是熟知速度路程的公式.8、C【解析】當y=5時,則,解之得(負值舍去),故選C9、D【分析】根據(jù)二次函數(shù)圖象和性質逐項判斷即可.【詳解】解:∵拋物線y=ax2+bx+c的圖象開口向下,與y軸交于點B(0,3),∴a<0,c>0,∴ac<0,故A選項錯誤;∵拋物線y=ax2+bx+c與x軸有兩個交點,∴b2-4ac>0,故B選項錯誤;∵對稱軸是直線x=-1,∴當x=-1時,y>0,即a-b+c>0,故C選項錯誤;∵拋物線y=ax2+bx+c對稱軸是直線x=-1,與x軸交于A(1,0),∴另一個交點為(-3,0),∴當-3<x<1時,y>0,故D選項正確.故選:D.【點睛】本題考查二次函數(shù)的圖象和性質.熟練掌握二次函數(shù)的圖象和性質是解題的關鍵.10、B【分析】連接AC,根據(jù)圓周角定理,分別求出∠ACB=90,∠ACD=20,即可求∠BCD的度數(shù).【詳解】連接AC,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∵∠AED=20°,

∴∠ACD=∠AED=20°,

∴∠BCD=∠ACB+∠ACD=90°+20°=110°,

故選:B.【點睛】本題考查的是圓周角定理:①直徑所對的圓周角為直角;②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、A【分析】根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),結合選項進行判斷即可.【詳解】A、是無理數(shù),故本選項正確;

B、=2,是有理數(shù),故本選項錯誤;

C、0,是有理數(shù),故本選項錯誤;

D、1,是有理數(shù),故本選項錯誤;

故選:A.【點睛】本題考查了無理數(shù)的定義,屬于基礎題,掌握無理數(shù)的三種形式是解答本題的關鍵.12、D【分析】由得出,即,整體代入原式,計算可得.【詳解】,,,則原式.故選:.【點睛】本題主要考查分式的加減法,解題的關鍵是掌握分式加減運算法則和整體代入思想的運用.二、填空題(每題4分,共24分)13、216°.【詳解】圓錐的底面周長為2π×3=6π(cm),設圓錐側面展開圖的圓心角是n°,則=6π,解得n=216.故答案為216°.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.14、【分析】過點A作AH⊥DE,垂足為H,由旋轉的性質可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根據(jù)等腰直角三角形的性質可得∠HAE=45°,AH=3,進而得∠HAF=30°,繼而求出AF長即可求得答案.【詳解】過點A作AH⊥DE,垂足為H,∵∠BAC=90°,AB=AC,將△ABD繞點A逆時針方向旋轉,使AB與AC重合,點D的對應點E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案為.【點睛】本題考查了旋轉的性質,等腰直角三角形的性質,勾股定理,解直角三角形等知識,正確添加輔助線構建直角三角形、靈活運用相關知識是解題的關鍵.15、30°【分析】連接OC、CD,由切線的性質得出∠OCP=90°,由圓內接四邊形的性質得出∠ODC=180°?∠A=60°,由等腰三角形的性質得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性質即可得出結果.【詳解】如圖所示:連接OC、CD,∵PC是⊙O的切線,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°?∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°?2×60°=60°,∴∠P=90°?∠DOC=30°;故填:30°.【點睛】本題考查了切線的性質、等腰三角形的性質、直角三角形的性質、三角形內角和定理;熟練掌握切線的性質是解題的關鍵.16、40°或70°或100°.【分析】根據(jù)旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.先連結AP,如圖,由旋轉的性質得OP=OB,則可判斷點P、C在以AB為直徑的圓上,利用圓周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分類討論:當AP=AC時,∠APC=∠ACP,即90°﹣α=70°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,;當CP=CA時,∠CAP=∠CAP,即α+20°=70°,再分別解關于α的方程即可.【詳解】連結AP,如圖,∵點O是AB的中點,∴OA=OB,∵OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,∴OP=OB,∴點P在以AB為直徑的圓上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴點P、C在以AB為直徑的圓上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,當AP=AC時,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;當CP=CA時,∠CAP=∠CPA,即α+20°=70°,解得α=100°,綜上所述,α的值為40°或70°或100°.故答案為40°或70°或100°.考點:旋轉的性質.17、【分析】先求出A,B點的坐標,找出點B關于y軸的對稱點D,連接AD與y足軸交于點C,用待定系數(shù)法可求出直線AD的解析式,進而可求出點C的坐標.【詳解】解:如下圖,作點點B關于y軸的對稱點D,連接AD與y足軸交于點C,∵反比例函數(shù)的圖象經(jīng)過點,,∴設直線AD解析式為:y=kx+b,將A,D坐標代入可求出:∴直線AD解析式為:∴點的坐標是:故答案為:.【點睛】本題考查的知識點是利用對稱求線段的最小值,解題的關鍵是根據(jù)反比例函數(shù)求出各點的坐標.18、1【解析】根據(jù)三角形內角和定理求出,根據(jù)圓內接四邊形的性質計算,得到答案.【詳解】,四邊形ABCD內接于,,故答案為1.【點睛】本題考查的是圓內接四邊形的性質、三角形內角和定理,掌握圓內接四邊形的對角互補是解題的關鍵.三、解答題(共78分)19、(1)A,B;;(2);(3)點Q在以點O為圓心,4為半徑的圓上;或在以點O為圓心,為半徑的圓上.【分析】(1)由題意利用“和諧三角形”以及“和諧距離”的定義進行分析求解;(2)由題意可知以BD的中點為圓心,以BD為直徑作圓此時可求點E的橫坐標t的取值范圍;(3)根據(jù)題意△OPQ是“和諧三角形”,且“和諧距離”是2,畫出圖像進行分析.【詳解】解:(1)由題意可知當A(2,0),B(0,4)與O構成三角形時滿足圓周角定理即能與點O組成“和諧三角形”,此時“和諧距離”為;(2)根據(jù)題意作圖,以BD的中點為圓心,以BD為直徑作圓,可知當E在如圖位置時求點E的橫坐標t的取值范圍,解得點E的橫坐標t的取值范圍為;(3)如圖當PQ為“和諧邊”時,點Q在以點O為圓心,為半徑的圓上;當OQ為“和諧邊”時,點Q在以點O為圓心,4為半徑的圓上.【點睛】本題考查圓的綜合問題,熟練掌握圓的相關性質以及理解題干定義是解題關鍵.20、【分析】由斜坡BD的坡度可求∠DBC=30°,從而得到∠DBA=∠DAB=15°,所以AD=BD,然后在Rt△ADE中,利用∠ADE的正弦求解即可.【詳解】∵斜坡BD的坡度,∴∠DBC=30°,又∵∠ABC=45°,∠ADE=60°,∴∠DBA=∠DAB=15°,∴AD=BD=100米.在Rt△ADE中,sin∠ADE=,∴AE=ADsin∠ADE=100sin60°=50(米).【點睛】本題考查了解直角三角形的應用,解決此問題的關鍵在于正確理解題意得基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.21、(1)見解析;(2)2-【分析】(1)若要證明CD是⊙O的切線,只需證明CD與半徑垂直,故連接OE,證明OE∥AD即可;(2)根據(jù)等腰直角三角形的性質和扇形的面積公式即可得到結論.【詳解】解:(1)連接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切線;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴陰影部分面積=S△OCE﹣S扇形OBE=2×2﹣=2﹣.【點睛】本題綜合考查了圓與三角形,涉及了切線的判定、等腰三角形的性質、扇形的面積,靈活的將圖形與已知條件相結合是解題的關鍵.22、廣告牌的高度為54.6米.【分析】由題可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出關于CD的等式并解出,從而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的長度,最后用CE-CD即為所求.【詳解】解:∵又,在中,即答:廣告牌的高度為54.6米.【點睛】本題考查了解直角三角形的應用,關鍵是根據(jù)仰角構造直角三角形,利用三角函數(shù)求解,注意利用兩個直角三角形的公共邊求解是解答此類題型的關鍵.23、(1)作圖見解析;(2)四邊形AECF為菱形,理由見解析.【解析】(1)按要求連接AC,分別以A,C為圓心,以大于AC長為半徑畫弧,弧在AC兩側的交點分別為P,Q,作直線PQ,PQ分別與BC,AC,AD交于點E,O,F(xiàn),連接AE、CF即可;(2)根據(jù)所作的是線段的垂直平分線結合平行四邊形的性質,證明△OAF≌△OCE,繼而得到OE=OF,從而得AC與EF互相垂直平分,根據(jù)對角線互相垂直平分的四邊形是菱形即可得.【詳解】(1)如圖,AE、CF為所作;(2)四邊形AECF為菱形,理由如下:∵EF垂直平分AC,∴OA=OC,EF⊥AC,∵四邊形ABCD為平行四邊形,∴AF∥CE,∴∠OAF=∠OCE,∠OFA=∠OEC,∴△OAF≌△OCE,∴OE=OF,∴AC與EF互相平分,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴平行四邊形AECF為菱形.【點睛】本題考查了平行四邊形的性質,全等三角形的判定與性質,段垂直平分線的性質,菱形的判定等,掌握尺規(guī)作圖的方法,作圖中的條件就是第二問中的已知條件,正確進行尺規(guī)作圖是解題的關鍵.24、(1)見解析;(2)與⊙相切,理由見解析.【分析】(1)連接,由為的中點,得到,根據(jù)圓周角定理即可得到結論;(2)根據(jù)平行線的判定定理得到,根據(jù)平行線的性質得到于是得到結論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論