陽泉市重點中學2024年中考數(shù)學適應性模擬試題含解析_第1頁
陽泉市重點中學2024年中考數(shù)學適應性模擬試題含解析_第2頁
陽泉市重點中學2024年中考數(shù)學適應性模擬試題含解析_第3頁
陽泉市重點中學2024年中考數(shù)學適應性模擬試題含解析_第4頁
陽泉市重點中學2024年中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陽泉市重點中學2024年中考數(shù)學適應性模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.32.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.3.的相反數(shù)是A. B.2 C. D.4.如圖所示的圖形為四位同學畫的數(shù)軸,其中正確的是()A. B.C. D.5.﹣的相反數(shù)是()A.8 B.﹣8 C. D.﹣6.下列4個點,不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)7.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小8.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b9.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.10.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.8二、填空題(本大題共6個小題,每小題3分,共18分)11.如果將“概率”的英文單詞probability中的11個字母分別寫在11張相同的卡片上,字面朝下隨意放在桌子上,任取一張,那么取到字母b的概率是________.12.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉(zhuǎn)75°,點的對應點恰好落在軸上,若點的坐標為,則點的坐標為____________.13.若一元二次方程x2﹣2x﹣m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過第_____象限.14.如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.15.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.16.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.三、解答題(共8題,共72分)17.(8分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.18.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關(guān)系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關(guān)系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結(jié)論求出點M的坐標.19.(8分)2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?20.(8分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.21.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.22.(10分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數(shù)式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.23.(12分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關(guān)系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.24.已知,關(guān)于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

由根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結(jié)論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積是關(guān)鍵.2、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設(shè)點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.3、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.4、D【解析】

根據(jù)數(shù)軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統(tǒng)一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數(shù)軸三要素,故正確;故選D.【點睛】本題考查數(shù)軸的畫法,熟記數(shù)軸三要素是解題的關(guān)鍵.5、C【解析】互為相反數(shù)的兩個數(shù)是指只有符號不同的兩個數(shù),所以的相反數(shù)是,故選C.6、D【解析】分析:根據(jù)得k=xy=-6,所以只要點的橫坐標與縱坐標的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.7、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.8、D【解析】

根據(jù)分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點睛】本題考查了分式的基本性質(zhì),分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變.9、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.10、C【解析】

∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設(shè)OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:讓英文單詞probability中字母b的個數(shù)除以字母的總個數(shù)即為所求的概率.詳解:∵英文單詞probability中,一共有11個字母,其中字母b有2個,∴任取一張,那么取到字母b的概率為.故答案為.點睛:本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.12、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點C的坐標為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標與圖形變換,同時也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長度,即可解決問題.13、一【解析】∵一元二次方程x2-2x-m=0無實數(shù)根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過二三四象限,不經(jīng)過第一象限.

故答案是:一.14、1.【解析】

根據(jù)已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半1米,拋物線頂點C坐標為(0,1),

設(shè)頂點式y(tǒng)=ax1+1,把A點坐標(-1,0)代入得a=-0.5,

∴拋物線解析式為y=-0.5x1+1,

當水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當y=-1.5時,對應的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,

可以通過把y=-1.5代入拋物線解析式得出:

-1.5=-0.5x1+1,

解得:x=±3,

1×3-4=1,

所以水面下降1.5m,水面寬度增加1米.

故答案為1.【點睛】本題考查了二次函數(shù)的應用,根據(jù)已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學會把實際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.15、12.【解析】

設(shè)AD=a,則AB=OC=2a,根據(jù)點D在反比例函數(shù)y=的圖象上,可得D點的坐標為(a,),所以O(shè)A=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設(shè)ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質(zhì)求得x=,即可得點E的坐標為(,),根據(jù)點E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設(shè)AD=a,則AB=OC=2a,∵點D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設(shè)ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點E的坐標為(,)是解決問題的關(guān)鍵.16、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.【點睛】本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計算得出x的值是解題的關(guān)鍵.三、解答題(共8題,共72分)17、見解析【解析】

證明△FDE∽△FBD即可解決問題.【詳解】解:∵四邊形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共邊,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四邊形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF?BF.【點睛】本題考查了相似三角形的判定與性質(zhì),和正方形的性質(zhì),正確理解正方形的性質(zhì)是關(guān)鍵.18、【思考】h1+h1=h;【探究】h1-h(huán)1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解析】

思考:根據(jù)等腰三角形的性質(zhì),把代數(shù)式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質(zhì),再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【詳解】思考即h1+h1=h.探究h1-h(huán)1=h.理由.連接,∵∴∴h1-h(huán)1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h(huán)1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【點睛】本題結(jié)合三角形的面積和等腰三角形的性質(zhì)考查了新性質(zhì)的推理與證明,熟練掌握三角形的性質(zhì),結(jié)合圖形層層推進是解答的關(guān)鍵.19、(1)2元;(2)第二批花的售價至少為元;【解析】

(1)設(shè)第一批花每束的進價是x元,則第二批花每束的進價是(x+0.5)元,根據(jù)數(shù)量=總價÷單價結(jié)合第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)由第二批花的進價比第一批的進價多0.5元可求出第二批花的進價,設(shè)第二批菊花的售價為m元,根據(jù)利潤=每束花的利潤×數(shù)量結(jié)合總利潤不低于1500元,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.【詳解】(1)設(shè)第一批花每束的進價是x元,則第二批花每束的進價是元,根據(jù)題意得:,解得:,經(jīng)檢驗:是原方程的解,且符合題意.答:第一批花每束的進價是2元.(2)由可知第二批菊花的進價為元.設(shè)第二批菊花的售價為m元,根據(jù)題意得:,解得:.答:第二批花的售價至少為元.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出分式方程;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.20、見解析;.【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結(jié)果、、、、、、、、、、、;在所有12種等可能結(jié)果中,在函數(shù)的圖象上的有、、這3種結(jié)果,點在函數(shù)的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】

(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結(jié)論;

(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點,E是AD的中點,

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應用.22、(1)(3,3);(2)頂點N坐標為(,);(3)詳見解析;(4)<n<.【解析】

(1)由正方形的性質(zhì)及A、B、D三點的坐標求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點式即可得出答案;(3)將點N的坐標代入y=x2,看是否符合解析式即可;(4)根據(jù)“小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐”知:當x=2時y>3,當x=3時y<2,據(jù)此列出關(guān)于n的不等式組,解之可得.【詳解】(1)∵A(2,2),B(3,2),D(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論