2024年第二季度生成式人工智能報告_第1頁
2024年第二季度生成式人工智能報告_第2頁
2024年第二季度生成式人工智能報告_第3頁
2024年第二季度生成式人工智能報告_第4頁
2024年第二季度生成式人工智能報告_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Nowdecidesnext:

GettingrealaboutGenerativeAI

Deloitte’sStateofGenerativeAIintheEnterpriseQuartertworeport

April2024

/us/state-of-generative-ai

Tableofcontents

+

Foreword

+

Introduction

+

Now:Keyfindings

1Valuecreation

2Scalingup

3Buildingtrust

4Evolvingtheworkforce

+

Next:Lookingahead

+

Authorship&Acknowledgments

+

AbouttheDeloitteAIInstitute

AbouttheDeloitteCenterforIntegratedResearch

AbouttheDeloitteCenterforTechnology,Media&Telecommunications

+

Methodology

2

Introduction

Foreword

WehavetraveledalongwaysincetheGenerativeAIspaceracekickedoffinNovember2022—andyet,weknowwearestillatthebeginningofthislongandexcitingtransformation.Everyday,we

talkwithclientsabouthowmuchthereistofocusoninthemoment,howexplosivethepaceofchangeis,andhowchallengingitcanbeamidtheexcitementtotakealonger-termview.

“Weareinthefirstinningofa

thousand-inninggameandthere’ssomuchtobefiguredout.”

-Chiefanalyticsofficerinfinancialservices

Weseeorganizationsstartingtoachievebenefitsandmovetowardanearfuturewherethis

earlystageofGenerativeAItoolsiswidelydispersedanddrivingnewvalue.Buttherearealsosomehardrealitiestodealwithasbusinessleaderslooktoscaleandrealizethepotentialofthispowerfultechnology.

TheStateofGenerativeAIintheEnterprise:GettingrealaboutGenerativeAIcapturesanewsnapshotofthistransformativetimefromtheperspectivesofnearly2,000businessandtechnologyleaders,allfromorganizationsthatareactivelydeployingandscalingGenerativeAItoday.Echoingour

3

manyclients,fromtheseexecutiveswehearthatwhileexcitementpersistsitmaybeatitspeakasleaderscomeupagainstculturalchallenges,questionsabouthowtomanagetheirworkforces,andissueswithtrustthat—atleastfornow—standinthewayofunlockingGenerativeAI’sfullvalue.

Alltold,itisexcitingthatGenerativeAI’spotentialisbeginningtoweaveitswaydeeperintothe

foundationsofhoworganizationsoperateandwecontinuetolearnmoreaboutemergingleadingpractices.Amidthosedevelopments,wealsocontinuetoseethatachievingvaluewithGenerativeAIconnectshandinhandwithkeepinghumansatthecenter.

Learnmoreabouttheseriesandsignupforupdatesat

/us/state-of-generative-ai

.

NitinMittal,CostiPerricos,KateSchmidt,BrennaSnidermanandDavidJarvis

Introduction

GettingrealaboutGenerativeAI

Istheinfatuationphaseover?QuartertwoofDeloitte’sglobalquarterlysurveyfoundmanyorganizations

beginningtogetdowntotheseriousworkofmakingGenerativeAI’svastpotentialareality.

Thisreportpresentsfindingsfromthesecondin

Deloitte’songoingseriesofquarterlyglobalsurveysonGenerativeAIintheenterprise.Togainadditionalcontextforourwavetworesearch,wealso

conductedaseriesofin-depthinterviewswithseniorexecutivesfromabroadrangeofindustries.

Ourresearchshowsthatorganizationsareincreasinglyprioritizingvaluecreationanddemandingtangible

resultsfromtheirGenerativeAIinitiatives.ThisrequiresthemtoscaleuptheirGenerativeAIdeployments—advancingbeyondexperimentation,pilotsandproofsofconcept.Transitioningtolarge-scaledeployments

willincreaseGenerativeAI’simpactonthebusiness

andexpanditsreachtoamuchlargersegmentoftheworkforce.Successfulscaling,inturn,presentsawiderangeofchallenges,encompassingeverythingfrom

strategy,processesandpeopletodataandtechnology.

Twoofthemostcriticalchallengesforscalingare

buildingtrust(intermsofmakingGenerativeAI

bothmoretrustedandtrustworthy)andevolving

theworkforce(addressingGenerativeAI’spotentiallymassiveimpactonworkerskills,rolesandheadcount).

Herewe’lltakeanin-depthlookatallfourofthese

areas—value,scaling,trustandworkforce—tohelp

organizationsmoveforwardmoreeffectivelyontheirGenerativeAIjourneys.Futuresurveyreportswill

focusselectivelyonotherkeychallengestosuccessfulGenerativeAIscalingandvaluecreation.

4

5

Introduction

GettingrealaboutGenerativeAI(cont’d)

Valuecreation

?Thepercentageoforganizationsreportingtheywerealreadyachievingtheirexpectedbenefitstoa“l(fā)arge”or“verylarge”extentis18%–36%,dependingonthetypeof

benefitbeingpursued.

?Organizationsthatreported“high”or“veryhigh”levelsofGenerativeAIexpertisearescalingGenerativeAImuchmoreaggressively—andareachievingtheirdesiredbenefitstoamuchgreaterdegreethanothers.

?OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovation(45%)andimprovingoperations(43%)—addressingthevalueequationfrombothsides.

Scalingup

?Leadersseescalingasessentialforcreatingvalue,increasingGenerativeAI’simpact

onthebusinessandexpandingthetechnology’suserbase.ThescalingphaseiswhenGenerativeAI’spotentialbenefitsareconvertedintoreal-worldvalue.It’salso,however,whenanorganization’spotentialconcernscanbecomereal-worldbarrierstosuccess.

?Commonareasofconcernincludedatasecurityandquality,explainabilityofGenerativeAIoutputs,andworkermistrustorlackoffamiliaritywithGenerativeAItools.

?WorkforceaccesstoapprovedGenerativeAItoolsandapplicationsremainsquitelow,withnearlyhalfofsurveyedorganizations(46%)reportingtheyprovidedapproved

GenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).However,mostworkerswithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithoutconsent.

AllstatisticsnotedinthisreportanditsgraphicsarederivedfromDeloitte’ssecondquarterlysurvey,conductedJanuary–February2024;TheStateofGenerativeAIintheEnterprise:Nowdecidesnext,areportseries.N(Total

leadersurveyresponses)=1,982.

GenerativeAIisanareaofartificialintelligenceandreferstoAIthatinresponsetoaquerycancreatetext,

images,videoandotherassets.GenerativeAIsystemscaninteractwithhumansandareoftenbuiltusinglargelanguagemodels(LLMs).Alsoreferredtoas“GenAI.”

Introduction

GettingrealaboutGenerativeAI(cont’d)

Buildingtrust

?Lackoftrustremainsamajorbarriertolarge-scale

GenerativeAIadoptionanddeployment.Twokey

aspectsoftrustweobservedare:(1)trustinthequalityandreliabilityofGenerativeAI’soutputand(2)trust

fromworkersthatthetechnologywillmaketheirjobseasierwithoutreplacingthem.

?TrustissueshavenotpreventedorganizationsfromrapidlyadoptingGenerativeAIforexperiments

andproofsofconcept,with60%reportingthey

areeffectivelybalancingrapidimplementationwithriskmanagement.Trustislikelytobecomeabiggerissue,however,asorganizationstransitiontolarge-scaledeployment.Manyreportedtheyarecurrentlyinvestingsignificanttimeandeffortintobuilding

guardrailsaroundGenerativeAI.

?Organizationsthatreported“high”or“veryhigh”levelsofexpertiserecognizetheimportanceofbuildingtrustinGenerativeAIacrossnumerousdimensions(e.g.,input/outputquality,transparency,workerempathy)andareimplementingprocessestoimproveittoamuchgreaterextentthanareotherorganizations.

Evolvingtheworkforce

?Mostorganizations(75%)expectthetechnologytoaffecttheirtalentstrategieswithintwoyears;32%oforganizationsthatreported“veryhigh”levelsofGenerativeAIexpertisearealreadymakingchanges.

?Themostexpectedtalentstrategyimpactsareprocessredesign(48%)andupskillingorreskilling(47%).

?GenerativeAIisexpectedtoincreasethevalueof

sometechnology-centeredskills(suchasdataanalysis)aswellashuman-centeredskills(suchascriticalthinking,creativityandflexibility),whiledecreasingthevalueofotherskills.

?Intheshortterm,moreorganizationssaidtheyexpectthetechnologytoincreaseheadcount(39%)thanto

decreaseheadcount(22%)—perhapsduetoincreasedneedsforGenerativeAIanddataexpertise.

AbouttheStateof

GenerativeAIintheEnterprise:Wavetwosurveyresults

Thewavetwosurveycoveredinthisreportwasfieldedto1,982director-toC-suite-levelrespondentsacross

sixindustriesandsixcountriesbetweenJanuary

andFebruary2024.Industriesincluded:Consumer;Energy,Resources&Industrials;FinancialServices;

LifeSciences&HealthCare;Technology,Media&

Telecom;andGovernment&PublicServices.Our

Q2surveyfindingsareaugmentedwithover20executiveinterviews.Thissecondreportispartofayearlong

seriesbytheDeloitteAIInstitutetohelpleaders

inbusiness,technologyandthepublicsectortrack

therapidpaceofGenerativeAIchangeandadoption.

TheseriesisbasedonDeloitte’sStateofAIintheEnterprisereports,whichhavebeenreleasedannuallythepastfiveyears.

Learnmoreat/us/state-of-generative-ai.

6

Now:Keyfindings

7

8

Now:Keyfindings

1Valuecreation

Proving,measuringandcommunicatingvalueiscrucial

toanorganization’sGenerativeAIjourney.Inoursurveyandinterviews,manyorganizationsreportedthey

wereincreasinglyemphasizingtheneedforGenerativeAIinitiativesandinvestmentstohaveclearvalue

objectivesanddelivertangibleresults,ratherthansimplybeingviewedasexperimentsorlearningexperiences.

AsoneexecutiveataFortune500manufacturingcompanynoted:“Wehaveaverystrictinternalrulethatifwedon’tseevaluefromourGenerativeAI

solutions,wewon’tdoitorwewon’tscaleit.”

Thatsaid,therearemanywaystodefineand

measurevalue—especiallyforatechnologywiththe

transformationalpotentialofGenerativeAI.Although

financialreturnoninvestment(ROI)isimportant,valuedriverssuchasinnovation,strategicpositioningand

competitivedifferentiationcanbeevenmoreimportant.

ValueobjectivesandprioritiesforGenerativeAIcan—

andshould—varybyorganization,industryandusecase.Wherethetechnology’spotentialimpactisstrategic

andtrulygame-changing,theneedandlatitudefor

experimentation,learningandinnovationaremuch

greater(withlessemphasisonimmediatepayback)thaninsituationswhereproductivityandcostsavingsaretheprimaryexpectedbenefits.

Moreover,GenerativeAIissonew—andadvancingsoquickly—thataccuratelyestimatingbenefitsismuch

harderthanforanestablishedtechnologywithaproventrackrecord.

“Anytechnologythat’salittleoverayearold,nobody’s

goingtohaveayear’sworthofdatatodoabackward-

lookingROI,”saidonetechcompanyexecutivewe

interviewed.“AndwiththefundamentalandfoundationalchangesGenerativeAIoffers,it’sveryhardtoevenofferaforward-looking[totalcostofoperating]orROIbecausethere’ssomanypossibilitiesofimpactandvariedways

tointegrateitintoyourbusiness.”

Therefore,manyforward-thinkingorganizationsareimplementingGenerativeAIwithoutspecificROItargetsastheyrealizetheycan’taffordtogetleftbehindinthiscriticalandfast-movingmarket.

Now:Keyfindings

GenerativeAI“experts”areachievingtheirdesiredbenefitstoamuchgreaterdegree.

Ineverycategory,organizationsthatratedthemselves

ashaving“high”or“veryhigh”levelsofGenerativeAI

expertisereportedmuchgreatersuccessatachievingtheirdesiredbenefits.Theiradvantagewasgreatestinstrategicandgrowth-relatedareassuchasimprovingproductsandservicesandencouraginginnovationandgrowth.

“l(fā)arge”or“verylarge”extentis18%–36%,dependingonthetypeofbenefitbeingpursued.

OrganizationsarestartingtodemandtangiblebusinessvaluefromGenerativeAI,andsomearebeginningtoachievereal-worldbenefits.

Asonepublicsectorexecutivetoldus,“Thebigselling

pointisifImakeaninvestmentanddosomethinglike

this,what’sthetangiblereturnandwhataresomeeasy

returns?Andthenwhataremorecomplicatedlonger-termreturnsthattakemoreinvestmentmoney?IfIcandosomeoftheeasieronesandbuildonthem,itcantranslateinto‘Ithinkthiswouldbeworthittoinvestalotmoremoney.’Ibelievealotofentitiesinoursectorareatthatpoint.”

TheorganizationswesurveyedexpectGenerativeAItodeliverabroadrangeofbenefits,withthemostcommonobjective—atleastintheshortterm—beingimproved

efficiencyandproductivity(56%),whichisconsistentwiththeresultsfromlastquarter’ssurvey.Thepercentageofrespondentswhosaidtheirorganizations’GenerativeAIinitiativeswerealreadyachievingexpectedbenefitstoa

Achievingbenefits

Ofthoseseekingthebenefit,thepercentageofrespondentsachievingthebenefittoalargeextentormore

Veryhighexpertise

Overall

63%

55%

54%

48%

48%

48%

40%

42%

36%

70%

22%

30

Detectfraud/managerisk

Shiftworkers fromlower-tohigher-leveltasks

28

%35

%27

%18

%36

%

%25

%29

%30%

Improveexisting

products

andservices

Increasespeed/ easeofdevnewsystems/software

Reducecosts

Uncovernewideasand insights

Increaserevenue

Encourageinnovationandgrowth

Improve

efficiencyandproductivity

Enhance

relationshipswithclients/customers

Figure1

Q:Whatareyouranticipatedbenefitsandtowhatextentareyouachievingthosebenefitstodate?(Jan./Feb.2024);N(Total)=1,982;N(veryhigh)=96

9

10

Now:Keyfindings

“Expert”organizationsarescalingGenerativeAImuchmoreaggressively.

GenerativeAIexpertorganizationsarelikelyhaving

moresuccessatcapturingbenefitsbecausetheyarescalingupmuchmoreaggressively,comparedtotheothercategories,whichprovidesalargerbasefor

generatingbenefits.

Accordingtooursurvey,organizationsreporting“very

high”levelsofGenerativeAIexpertisearedeployingAImuchmorerapidlyandextensivelythanothers.Infact,73%saidtheyareadoptingthetechnologyata“fast”

or“veryfast”pace(versusonly40%oforganizations

with“some”levelofexpertise).Theyarealsoscaling

GenerativeAIathigherratesacrossfunctionsandusingitmorewithinfunctions.Forexample,thosewith“very

high”expertisereported,onaverage,implementingatscalein1.4functions,outofeighttotalfunctions,whilethosewith“some”expertisearedoingsoinonly0.3functions.Further,38%ofthosewith“veryhigh”expertisereportedimplementingGenerativeAIatscaleinmarketing,salesandcustomerservice—

versusonly10%oforganizationswith“some”levelofexpertise.

Companiesthatreportexpertisearemovingquickly.

80%

73%

66%

64%

61%

62%

47%

48%

39%

40%

33%

34%

19%

Figure2

(Jan./Feb.2024)N(Total)=1,982;N(Veryhigh)=96;N(Some)=1,021

23%

Adoptingata

Providingmoreoftheir

Adoptingathigherlevels

Investingmorein

Investingmorein

Usingcode

Usingopen-source

fasterpace

workforceaccessto

acrossfunctions

hardware

cloudconsumption

generatorsmore

LLMsmore

AdoptingGenerativeAI

GenAI

ImplementingGenerative

Increasinghardware

Increasingcloud

CurrentlyusingGenerative

Currentlyusing

“fast”or“veryfast”

>40%ofworkforcehas

AIformarketing,sales

investmentbecauseof

investmentbecauseof

AIcodegenerator

opensourcelarge

accesstoGenerativeAItools/applications

andcustomerservice

GenerativeAIstrategy

GenerativeAIstrategy

languagemodels

Veryhighexpertise

Someexpertise

Now:Keyfindings

Insightsfromourexecutiveinterviewsaligncloselywithsurveyfindings,showingthatleadingorganizationsareaggressivelyscalinguptheirGenerativeAIeffortsbothhorizontally(acrossmultiplefunctionsordomains)

andvertically(withinasinglefunctionordomain).Thiscombinationofhorizontalandverticalscalingmayhelpachievevaluecreationmoreeffectively.

Asonechieftransformationofficerinmanufacturingnoted,“[Wehave]anapplicationthatisbeingincrediblysuccessful

andhassavedussignificantamountsofmoney…andthatwehavescaledverybroadlyacrossmanyofoursitesandcontinuetoscalefurtheracrossmoreequipmentacrossmoresites.”

Similarly,fromabroadmarketperspectiveweareseeinganincreasinglysharpdistinctionbetweenhorizontalusecasesthatcutacrossindustries(e.g.,officeproductivitysuitesandenterpriseresourceplanningsystemswith

integratedGenerativeAI)andverticalusecasesthat

areindustry-specificandnarrowlyfocusedbutmorestrategicallyimpactful(e.g.,GenerativeAItoolsforsemiconductordesignthatareusedonlybyasmallsubsetofworkersbuthaveaverylargeimpactonthebusiness).

11

Now:Keyfindings

OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovationandadditionaloperationsimprovements.

Amongtheoverallrespondentpool,organizationssaidtheyprimarilyplannedtoreinvestcost

andtimesavingsfromGenerativeAIintodriving

innovation(45%)andimprovingoperations(43%),

addressingthevalueequationfrombothsides.It’sinterestingtonotethatasignificantpercentage

oforganizations(27%)alsoplannedtoreinvestinscalingGenerativeAIadoption,creatingacycleofGenerativeAIreinvestmentandgrowth.

Organizationswith“veryhigh”GenerativeAI

expertiseareevenmorefocusedthanothersondrivinginnovation(51%).TheyarealsolessinclinedthanotherstoreinvestsavingsfromGenerativeAIintoimprovingoperationsandmoreinclinedtoprioritizedevelopingnewproductsandservices.

Therightreinvestmentapproachdependsonan

organization’sspecificneeds.Organizationscurrentlyfacingstrategicdisruptionortransformationfrom

GenerativeAIhaveagreaterimperativetofocuson

strategicobjectivessuchasinnovationandgrowth,andarelikelyalreadyworkingmoreaggressivelytodevelopstrongGenerativeAIcapabilities.

Bycontrast,organizationsinindustriesthatare

currentlynotbeingdisruptedbyGenerativeAIaremorelikelytofocusonbenefitssuchasindividual

workerproductivityandoperationsimprovement,areaswithlessofasenseofurgencyandless

toleranceforrisk.SuchorganizationscanstillbenefitgreatlyfromGenerativeAI—justinadifferentway.Theyalsohaveavaluableopportunitytowatch

andlearnfromtheexperiencesofotherindustriesthatarecurrentlybeingdisrupted—lessonsthatcouldservethemwellifandwhenGenerativeAIdisruptionreachestheirownindustry.

“ToenableGenAIvalueinourbusiness,weneedtochangeourmindsetanddevelopR&Dcapabilitiestorealizealong-termvisionenabledbyGenAI,”saidtheCEOofadigitalmediacompany.“Rightnow,[ourmindset]isshort-termandjustabouttangiblecashvalueforone-offusecases.”

Areastoreinvesttimeandcostsavings

Driving innovationopportunities

Developingnewproductsandservices

ScalingGenAIadoptionacrosstheorganization

Trainingand upskillingemployees

EnhancingITinfrastructure

Creatinga returnforshareholders

45%

43%

29%

28%

27%

28%

23%

20%

19%

16%

Improvingoperationsacrosstheorganization

Expandingourmarket

Improving

cybersecurityinfrastructure

Enhancingriskmanagementsystems

Exploringnew

businessmodels

Creatingnewjobs

Figure3

Q:Wheredoesyourcompanyplantoreinvestcostortimesavings

generatedthroughimplementationofGenAIcapabilities(selecttop3)?

(Jan./Feb.2024)N(Total)=1,982

12

13

2

Now:Keyfindings

Scalingup

Akeytovaluecreation,scalingincreasesGenerative

AI’simpactonthebusinessandexpandsitsuser

base—bothofwhichhaveastrongmultipliereffectonGenerativeAI’sbenefits.Yet,manyorganizationsfinditchallengingtomaketheleapfrompilotsandproofsofconcepttolarge-scaledeployment.

Scalingiscomplexandrequireseffortacrossavarietyofinterrelatedelementsspanningstrategy,process,people,dataandtechnology.AlthoughthechallengesassociatedwithscalingGenerativeAIarecommontomanydigital

transformationinitiatives,issuessuchasriskmanagementandgovernance,workforcetransformation,trustanddatamanagementtakeonevengreaterimportance.Whatworkedwellinthepastmightnotworkthesamewaywiththisnewtechnology.

Thescalingphaseiswhenpotentialbenefitsare

convertedintoreal-worldvalue.Itisalso,however,when

potentialissuesbecomereal-worldbarriers.AndwithGenerativeAI,manyofthosebarriersarestillbeingidentifiedandunderstood.

“Therearealwaysissuesthatemergethroughthe

adoptionandscalingtransitionthataren’texpected—

thequestionwehavetoconsiderishowhardaretheytoovercome,”saidachieftechnologyofficerweinterviewed.“Forexample,[oneofour]usecaseshadsometechnical,policyandcybersecurityissues,buttheywererelativelyeasytoovercome,sowescaled.Conversely,for[two

other]usecasesmoreissuesemergedlinkedtotheskillleveltoworkwiththeoutputsoftheAIsolution.These

havebeenhardertoaddress,soscalinghasbeenslower.”

Apublicsectorchiefinformationofficeroutlinedanotherapproach:“[Forus,successfulscalingis]buildingon

previoussuccessesandthentakingthoseinitiativestoanotherlevel.Expandingtootherareasofthe

organization,incorporatingmoredatasets,expandingtheuserbase(internalandexternal)toimproveuponexistingresults,andrefiningthecurrentsolutionformorevalue.

Thisphasedapproachgivesusasenseofassurancetheinvestmentisworthwhilebeforewecommitsignificantlymoreresources.”

Off-the-shelfGenerativeAIsolutionsforcommonuse

casessuchasofficeproductivityarearguablytheeasiesttodeployatscale,buttheystillrequiresubstantial

investment,effortandtraining.Foruniqueand/ormorestrategicGenerativeAIsolutionsandusecases,the

complexityandchallengesincreasebyleapsandbounds,alongwiththepotentialforgreaterreturns.

14

Now:Keyfindings

WorkforceaccesstoapprovedGenAItoolsandapplicationsremainslow.

Nearlyhalfofourrespondents(46%)reportedtheyprovidedapprovedGenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).Organizationsreporting“veryhigh”levelsofGenerativeAIexpertisearefurtheralong,withnearlyhalf(48%)

providingapprovedGenerativeAIaccesstoatleast40%oftheirworkforces.Evenforthese“expert”organizations,workeraccesstoapprovedtoolsremainstheexception,nottherule.

Ourexecutiveinterviewspointedtoanumberofreasonsforthisoveralllowpenetration

rate,mostlyrevolvingaroundriskversusreward—especiallydata-relatedrisks.Dothe

potentialrewardsofGenerativeAIjustifytherisks,andcantherisksbemitigated?In

particular,wefoundwidespreadconcernthatallowingworkerstousepubliclargelanguagemodels(LLMs)andGenerativeAItoolsmightleadtoproblemswithprotectionofintellectualpropertyandcustomerprivacy.

PercentageofworkforcewithaccesstoGenerativeAI

49%

46%

36%

29%28%27%

31%

16%16%14%

25%

23%24%

16%

w5%w3%1%3%4%

8%

6%7%

6%

2%

Upto20%20%–40%40%–60%60%–80%Morethan80%

Percentageoftheworkforce

Q:Howmuchofyouroverallworkforce,doyouestimate,haveaccesstoyourorganization’ssanctioned(approved)GenerativeAItools/applications?(Jan./Feb.2024)N(Total)=1,982,N(Veryhigh)=96,N(High)=606,N(Some)=1,021,N(Little)=257

76%

Overall

Littleexpertise

SomeexpertiseHighexpertise

Veryhighexpertise

Figure4

Now:Keyfindings

Otherconcernsthatcameupinourexecutiveinterviewsinclude:

?GenerativeAIoutputsthatcanbeunpredictableandsubjecttoinaccuracies(i.e.,“hallucinations”)—whichunderminetrust,particularlywhencombinedwithlackoftransparencyandexplainability

?PotentiallossofcontroloverwhatGenerativeAIappsarebeingusedwithintheorganizationandwhoisusingthem

?WorkerresistancetousingGenerativeAIduetolackoffamiliarityorconcernsaboutbeingreplaced

Giventhepotentialchallengesandrisks,acautious

approachtoallowingworkerstouseGenerativeAItoolsarguablymakessense.However,tightrestrictionson

GenerativeAIarebestviewedasatemporarystopgapmeasure—notaviablelong-termsolution.Logically,

anyworkerwithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithouttheiremployer’sconsent—potentiallyleaking

sensitivedataandintellectualpropertyintopublicLLMsinanentirelyuncontrolledway.Thisstatusislikelyto

continueintheabsenceofpracticalpoliciesforallowingandmanagingwidespreadGenerativeAIaccess.

Organizationsshouldbeactivelydevelopingsustainableprocessesandpoliciesforenablingubiquitousbut

responsibleGenerativeAIuseandmanagingthe

associatedrisksatscale.Widespreadbutcontrolled

accesstoGenerativeAIwillhelppeoplegetmore

comfortablewiththetechnologyandenablethemtounderstandwhatitcanandcannotdo—givingthemamorerealisticandinformedperspectivewhileopeningthedoortonewopportunitiesforGenerativeAIvaluecreationacrosstheenterprise.

15

“Ithasbeensurprisingtoseehowlowthebaristodosomething

quickanddirty—thisisboth

excitingandscary,butthebig

challengeistoscale—thisisa

wholenewballgame…butscalingishardwithoutcentralization.”

-DirectorofdatascienceandAIinthetechnologyindustry

16

3

Now:Keyfindings

Buildingtrust

Lackoftrustcontinuestobeoneofthebiggestbarrierstolarge-scaleadoptionanddeploymentofGenerativeAI.Inthiscontext,twokeyaspectsoftrustare:(1)trustinthequalityandreliabilityofGenerativeAI’soutput(supportedbyimprovedtransparencyandexplainability),and(2)trustfromworkersthatGenerativeAIwillmaketheirjobseasierandwon’treplacethem.

Regardingworkertrust,oneexecutiveweinterviewed

notedthat“oncepeoplestartseeingefficienciesand

thebenefitsthetoolshavetotheirwork,thatwilldriveadoptionandsustainedsuccess.”Inotherwords,greaterexposuretoGenerativeAItoolswillhelppeoplebecomemorecomfortablewiththetechnologyandunderstandhowitcanhelpthemdo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論