版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Nowdecidesnext:
GettingrealaboutGenerativeAI
Deloitte’sStateofGenerativeAIintheEnterpriseQuartertworeport
April2024
/us/state-of-generative-ai
Tableofcontents
+
Foreword
+
Introduction
+
Now:Keyfindings
1Valuecreation
2Scalingup
3Buildingtrust
4Evolvingtheworkforce
+
Next:Lookingahead
+
Authorship&Acknowledgments
+
AbouttheDeloitteAIInstitute
AbouttheDeloitteCenterforIntegratedResearch
AbouttheDeloitteCenterforTechnology,Media&Telecommunications
+
Methodology
2
Introduction
Foreword
WehavetraveledalongwaysincetheGenerativeAIspaceracekickedoffinNovember2022—andyet,weknowwearestillatthebeginningofthislongandexcitingtransformation.Everyday,we
talkwithclientsabouthowmuchthereistofocusoninthemoment,howexplosivethepaceofchangeis,andhowchallengingitcanbeamidtheexcitementtotakealonger-termview.
“Weareinthefirstinningofa
thousand-inninggameandthere’ssomuchtobefiguredout.”
-Chiefanalyticsofficerinfinancialservices
Weseeorganizationsstartingtoachievebenefitsandmovetowardanearfuturewherethis
earlystageofGenerativeAItoolsiswidelydispersedanddrivingnewvalue.Buttherearealsosomehardrealitiestodealwithasbusinessleaderslooktoscaleandrealizethepotentialofthispowerfultechnology.
TheStateofGenerativeAIintheEnterprise:GettingrealaboutGenerativeAIcapturesanewsnapshotofthistransformativetimefromtheperspectivesofnearly2,000businessandtechnologyleaders,allfromorganizationsthatareactivelydeployingandscalingGenerativeAItoday.Echoingour
3
manyclients,fromtheseexecutiveswehearthatwhileexcitementpersistsitmaybeatitspeakasleaderscomeupagainstculturalchallenges,questionsabouthowtomanagetheirworkforces,andissueswithtrustthat—atleastfornow—standinthewayofunlockingGenerativeAI’sfullvalue.
Alltold,itisexcitingthatGenerativeAI’spotentialisbeginningtoweaveitswaydeeperintothe
foundationsofhoworganizationsoperateandwecontinuetolearnmoreaboutemergingleadingpractices.Amidthosedevelopments,wealsocontinuetoseethatachievingvaluewithGenerativeAIconnectshandinhandwithkeepinghumansatthecenter.
Learnmoreabouttheseriesandsignupforupdatesat
/us/state-of-generative-ai
.
NitinMittal,CostiPerricos,KateSchmidt,BrennaSnidermanandDavidJarvis
Introduction
GettingrealaboutGenerativeAI
Istheinfatuationphaseover?QuartertwoofDeloitte’sglobalquarterlysurveyfoundmanyorganizations
beginningtogetdowntotheseriousworkofmakingGenerativeAI’svastpotentialareality.
Thisreportpresentsfindingsfromthesecondin
Deloitte’songoingseriesofquarterlyglobalsurveysonGenerativeAIintheenterprise.Togainadditionalcontextforourwavetworesearch,wealso
conductedaseriesofin-depthinterviewswithseniorexecutivesfromabroadrangeofindustries.
Ourresearchshowsthatorganizationsareincreasinglyprioritizingvaluecreationanddemandingtangible
resultsfromtheirGenerativeAIinitiatives.ThisrequiresthemtoscaleuptheirGenerativeAIdeployments—advancingbeyondexperimentation,pilotsandproofsofconcept.Transitioningtolarge-scaledeployments
willincreaseGenerativeAI’simpactonthebusiness
andexpanditsreachtoamuchlargersegmentoftheworkforce.Successfulscaling,inturn,presentsawiderangeofchallenges,encompassingeverythingfrom
strategy,processesandpeopletodataandtechnology.
Twoofthemostcriticalchallengesforscalingare
buildingtrust(intermsofmakingGenerativeAI
bothmoretrustedandtrustworthy)andevolving
theworkforce(addressingGenerativeAI’spotentiallymassiveimpactonworkerskills,rolesandheadcount).
Herewe’lltakeanin-depthlookatallfourofthese
areas—value,scaling,trustandworkforce—tohelp
organizationsmoveforwardmoreeffectivelyontheirGenerativeAIjourneys.Futuresurveyreportswill
focusselectivelyonotherkeychallengestosuccessfulGenerativeAIscalingandvaluecreation.
4
5
Introduction
GettingrealaboutGenerativeAI(cont’d)
Valuecreation
?Thepercentageoforganizationsreportingtheywerealreadyachievingtheirexpectedbenefitstoa“l(fā)arge”or“verylarge”extentis18%–36%,dependingonthetypeof
benefitbeingpursued.
?Organizationsthatreported“high”or“veryhigh”levelsofGenerativeAIexpertisearescalingGenerativeAImuchmoreaggressively—andareachievingtheirdesiredbenefitstoamuchgreaterdegreethanothers.
?OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovation(45%)andimprovingoperations(43%)—addressingthevalueequationfrombothsides.
Scalingup
?Leadersseescalingasessentialforcreatingvalue,increasingGenerativeAI’simpact
onthebusinessandexpandingthetechnology’suserbase.ThescalingphaseiswhenGenerativeAI’spotentialbenefitsareconvertedintoreal-worldvalue.It’salso,however,whenanorganization’spotentialconcernscanbecomereal-worldbarrierstosuccess.
?Commonareasofconcernincludedatasecurityandquality,explainabilityofGenerativeAIoutputs,andworkermistrustorlackoffamiliaritywithGenerativeAItools.
?WorkforceaccesstoapprovedGenerativeAItoolsandapplicationsremainsquitelow,withnearlyhalfofsurveyedorganizations(46%)reportingtheyprovidedapproved
GenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).However,mostworkerswithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithoutconsent.
AllstatisticsnotedinthisreportanditsgraphicsarederivedfromDeloitte’ssecondquarterlysurvey,conductedJanuary–February2024;TheStateofGenerativeAIintheEnterprise:Nowdecidesnext,areportseries.N(Total
leadersurveyresponses)=1,982.
GenerativeAIisanareaofartificialintelligenceandreferstoAIthatinresponsetoaquerycancreatetext,
images,videoandotherassets.GenerativeAIsystemscaninteractwithhumansandareoftenbuiltusinglargelanguagemodels(LLMs).Alsoreferredtoas“GenAI.”
Introduction
GettingrealaboutGenerativeAI(cont’d)
Buildingtrust
?Lackoftrustremainsamajorbarriertolarge-scale
GenerativeAIadoptionanddeployment.Twokey
aspectsoftrustweobservedare:(1)trustinthequalityandreliabilityofGenerativeAI’soutputand(2)trust
fromworkersthatthetechnologywillmaketheirjobseasierwithoutreplacingthem.
?TrustissueshavenotpreventedorganizationsfromrapidlyadoptingGenerativeAIforexperiments
andproofsofconcept,with60%reportingthey
areeffectivelybalancingrapidimplementationwithriskmanagement.Trustislikelytobecomeabiggerissue,however,asorganizationstransitiontolarge-scaledeployment.Manyreportedtheyarecurrentlyinvestingsignificanttimeandeffortintobuilding
guardrailsaroundGenerativeAI.
?Organizationsthatreported“high”or“veryhigh”levelsofexpertiserecognizetheimportanceofbuildingtrustinGenerativeAIacrossnumerousdimensions(e.g.,input/outputquality,transparency,workerempathy)andareimplementingprocessestoimproveittoamuchgreaterextentthanareotherorganizations.
Evolvingtheworkforce
?Mostorganizations(75%)expectthetechnologytoaffecttheirtalentstrategieswithintwoyears;32%oforganizationsthatreported“veryhigh”levelsofGenerativeAIexpertisearealreadymakingchanges.
?Themostexpectedtalentstrategyimpactsareprocessredesign(48%)andupskillingorreskilling(47%).
?GenerativeAIisexpectedtoincreasethevalueof
sometechnology-centeredskills(suchasdataanalysis)aswellashuman-centeredskills(suchascriticalthinking,creativityandflexibility),whiledecreasingthevalueofotherskills.
?Intheshortterm,moreorganizationssaidtheyexpectthetechnologytoincreaseheadcount(39%)thanto
decreaseheadcount(22%)—perhapsduetoincreasedneedsforGenerativeAIanddataexpertise.
AbouttheStateof
GenerativeAIintheEnterprise:Wavetwosurveyresults
Thewavetwosurveycoveredinthisreportwasfieldedto1,982director-toC-suite-levelrespondentsacross
sixindustriesandsixcountriesbetweenJanuary
andFebruary2024.Industriesincluded:Consumer;Energy,Resources&Industrials;FinancialServices;
LifeSciences&HealthCare;Technology,Media&
Telecom;andGovernment&PublicServices.Our
Q2surveyfindingsareaugmentedwithover20executiveinterviews.Thissecondreportispartofayearlong
seriesbytheDeloitteAIInstitutetohelpleaders
inbusiness,technologyandthepublicsectortrack
therapidpaceofGenerativeAIchangeandadoption.
TheseriesisbasedonDeloitte’sStateofAIintheEnterprisereports,whichhavebeenreleasedannuallythepastfiveyears.
Learnmoreat/us/state-of-generative-ai.
6
Now:Keyfindings
7
8
Now:Keyfindings
1Valuecreation
Proving,measuringandcommunicatingvalueiscrucial
toanorganization’sGenerativeAIjourney.Inoursurveyandinterviews,manyorganizationsreportedthey
wereincreasinglyemphasizingtheneedforGenerativeAIinitiativesandinvestmentstohaveclearvalue
objectivesanddelivertangibleresults,ratherthansimplybeingviewedasexperimentsorlearningexperiences.
AsoneexecutiveataFortune500manufacturingcompanynoted:“Wehaveaverystrictinternalrulethatifwedon’tseevaluefromourGenerativeAI
solutions,wewon’tdoitorwewon’tscaleit.”
Thatsaid,therearemanywaystodefineand
measurevalue—especiallyforatechnologywiththe
transformationalpotentialofGenerativeAI.Although
financialreturnoninvestment(ROI)isimportant,valuedriverssuchasinnovation,strategicpositioningand
competitivedifferentiationcanbeevenmoreimportant.
ValueobjectivesandprioritiesforGenerativeAIcan—
andshould—varybyorganization,industryandusecase.Wherethetechnology’spotentialimpactisstrategic
andtrulygame-changing,theneedandlatitudefor
experimentation,learningandinnovationaremuch
greater(withlessemphasisonimmediatepayback)thaninsituationswhereproductivityandcostsavingsaretheprimaryexpectedbenefits.
Moreover,GenerativeAIissonew—andadvancingsoquickly—thataccuratelyestimatingbenefitsismuch
harderthanforanestablishedtechnologywithaproventrackrecord.
“Anytechnologythat’salittleoverayearold,nobody’s
goingtohaveayear’sworthofdatatodoabackward-
lookingROI,”saidonetechcompanyexecutivewe
interviewed.“AndwiththefundamentalandfoundationalchangesGenerativeAIoffers,it’sveryhardtoevenofferaforward-looking[totalcostofoperating]orROIbecausethere’ssomanypossibilitiesofimpactandvariedways
tointegrateitintoyourbusiness.”
Therefore,manyforward-thinkingorganizationsareimplementingGenerativeAIwithoutspecificROItargetsastheyrealizetheycan’taffordtogetleftbehindinthiscriticalandfast-movingmarket.
Now:Keyfindings
GenerativeAI“experts”areachievingtheirdesiredbenefitstoamuchgreaterdegree.
Ineverycategory,organizationsthatratedthemselves
ashaving“high”or“veryhigh”levelsofGenerativeAI
expertisereportedmuchgreatersuccessatachievingtheirdesiredbenefits.Theiradvantagewasgreatestinstrategicandgrowth-relatedareassuchasimprovingproductsandservicesandencouraginginnovationandgrowth.
“l(fā)arge”or“verylarge”extentis18%–36%,dependingonthetypeofbenefitbeingpursued.
OrganizationsarestartingtodemandtangiblebusinessvaluefromGenerativeAI,andsomearebeginningtoachievereal-worldbenefits.
Asonepublicsectorexecutivetoldus,“Thebigselling
pointisifImakeaninvestmentanddosomethinglike
this,what’sthetangiblereturnandwhataresomeeasy
returns?Andthenwhataremorecomplicatedlonger-termreturnsthattakemoreinvestmentmoney?IfIcandosomeoftheeasieronesandbuildonthem,itcantranslateinto‘Ithinkthiswouldbeworthittoinvestalotmoremoney.’Ibelievealotofentitiesinoursectorareatthatpoint.”
TheorganizationswesurveyedexpectGenerativeAItodeliverabroadrangeofbenefits,withthemostcommonobjective—atleastintheshortterm—beingimproved
efficiencyandproductivity(56%),whichisconsistentwiththeresultsfromlastquarter’ssurvey.Thepercentageofrespondentswhosaidtheirorganizations’GenerativeAIinitiativeswerealreadyachievingexpectedbenefitstoa
Achievingbenefits
Ofthoseseekingthebenefit,thepercentageofrespondentsachievingthebenefittoalargeextentormore
Veryhighexpertise
Overall
63%
55%
54%
48%
48%
48%
40%
42%
36%
70%
22%
30
Detectfraud/managerisk
Shiftworkers fromlower-tohigher-leveltasks
28
%35
%27
%18
%36
%
%25
%29
%30%
Improveexisting
products
andservices
Increasespeed/ easeofdevnewsystems/software
Reducecosts
Uncovernewideasand insights
Increaserevenue
Encourageinnovationandgrowth
Improve
efficiencyandproductivity
Enhance
relationshipswithclients/customers
Figure1
Q:Whatareyouranticipatedbenefitsandtowhatextentareyouachievingthosebenefitstodate?(Jan./Feb.2024);N(Total)=1,982;N(veryhigh)=96
9
10
Now:Keyfindings
“Expert”organizationsarescalingGenerativeAImuchmoreaggressively.
GenerativeAIexpertorganizationsarelikelyhaving
moresuccessatcapturingbenefitsbecausetheyarescalingupmuchmoreaggressively,comparedtotheothercategories,whichprovidesalargerbasefor
generatingbenefits.
Accordingtooursurvey,organizationsreporting“very
high”levelsofGenerativeAIexpertisearedeployingAImuchmorerapidlyandextensivelythanothers.Infact,73%saidtheyareadoptingthetechnologyata“fast”
or“veryfast”pace(versusonly40%oforganizations
with“some”levelofexpertise).Theyarealsoscaling
GenerativeAIathigherratesacrossfunctionsandusingitmorewithinfunctions.Forexample,thosewith“very
high”expertisereported,onaverage,implementingatscalein1.4functions,outofeighttotalfunctions,whilethosewith“some”expertisearedoingsoinonly0.3functions.Further,38%ofthosewith“veryhigh”expertisereportedimplementingGenerativeAIatscaleinmarketing,salesandcustomerservice—
versusonly10%oforganizationswith“some”levelofexpertise.
Companiesthatreportexpertisearemovingquickly.
80%
73%
66%
64%
61%
62%
47%
48%
39%
40%
33%
34%
19%
Figure2
(Jan./Feb.2024)N(Total)=1,982;N(Veryhigh)=96;N(Some)=1,021
23%
Adoptingata
Providingmoreoftheir
Adoptingathigherlevels
Investingmorein
Investingmorein
Usingcode
Usingopen-source
fasterpace
workforceaccessto
acrossfunctions
hardware
cloudconsumption
generatorsmore
LLMsmore
AdoptingGenerativeAI
GenAI
ImplementingGenerative
Increasinghardware
Increasingcloud
CurrentlyusingGenerative
Currentlyusing
“fast”or“veryfast”
>40%ofworkforcehas
AIformarketing,sales
investmentbecauseof
investmentbecauseof
AIcodegenerator
opensourcelarge
accesstoGenerativeAItools/applications
andcustomerservice
GenerativeAIstrategy
GenerativeAIstrategy
languagemodels
Veryhighexpertise
Someexpertise
Now:Keyfindings
Insightsfromourexecutiveinterviewsaligncloselywithsurveyfindings,showingthatleadingorganizationsareaggressivelyscalinguptheirGenerativeAIeffortsbothhorizontally(acrossmultiplefunctionsordomains)
andvertically(withinasinglefunctionordomain).Thiscombinationofhorizontalandverticalscalingmayhelpachievevaluecreationmoreeffectively.
Asonechieftransformationofficerinmanufacturingnoted,“[Wehave]anapplicationthatisbeingincrediblysuccessful
andhassavedussignificantamountsofmoney…andthatwehavescaledverybroadlyacrossmanyofoursitesandcontinuetoscalefurtheracrossmoreequipmentacrossmoresites.”
Similarly,fromabroadmarketperspectiveweareseeinganincreasinglysharpdistinctionbetweenhorizontalusecasesthatcutacrossindustries(e.g.,officeproductivitysuitesandenterpriseresourceplanningsystemswith
integratedGenerativeAI)andverticalusecasesthat
areindustry-specificandnarrowlyfocusedbutmorestrategicallyimpactful(e.g.,GenerativeAItoolsforsemiconductordesignthatareusedonlybyasmallsubsetofworkersbuthaveaverylargeimpactonthebusiness).
11
Now:Keyfindings
OrganizationsprimarilyplantoreinvestthesavingsfromGenerativeAIintoinnovationandadditionaloperationsimprovements.
Amongtheoverallrespondentpool,organizationssaidtheyprimarilyplannedtoreinvestcost
andtimesavingsfromGenerativeAIintodriving
innovation(45%)andimprovingoperations(43%),
addressingthevalueequationfrombothsides.It’sinterestingtonotethatasignificantpercentage
oforganizations(27%)alsoplannedtoreinvestinscalingGenerativeAIadoption,creatingacycleofGenerativeAIreinvestmentandgrowth.
Organizationswith“veryhigh”GenerativeAI
expertiseareevenmorefocusedthanothersondrivinginnovation(51%).TheyarealsolessinclinedthanotherstoreinvestsavingsfromGenerativeAIintoimprovingoperationsandmoreinclinedtoprioritizedevelopingnewproductsandservices.
Therightreinvestmentapproachdependsonan
organization’sspecificneeds.Organizationscurrentlyfacingstrategicdisruptionortransformationfrom
GenerativeAIhaveagreaterimperativetofocuson
strategicobjectivessuchasinnovationandgrowth,andarelikelyalreadyworkingmoreaggressivelytodevelopstrongGenerativeAIcapabilities.
Bycontrast,organizationsinindustriesthatare
currentlynotbeingdisruptedbyGenerativeAIaremorelikelytofocusonbenefitssuchasindividual
workerproductivityandoperationsimprovement,areaswithlessofasenseofurgencyandless
toleranceforrisk.SuchorganizationscanstillbenefitgreatlyfromGenerativeAI—justinadifferentway.Theyalsohaveavaluableopportunitytowatch
andlearnfromtheexperiencesofotherindustriesthatarecurrentlybeingdisrupted—lessonsthatcouldservethemwellifandwhenGenerativeAIdisruptionreachestheirownindustry.
“ToenableGenAIvalueinourbusiness,weneedtochangeourmindsetanddevelopR&Dcapabilitiestorealizealong-termvisionenabledbyGenAI,”saidtheCEOofadigitalmediacompany.“Rightnow,[ourmindset]isshort-termandjustabouttangiblecashvalueforone-offusecases.”
Areastoreinvesttimeandcostsavings
Driving innovationopportunities
Developingnewproductsandservices
ScalingGenAIadoptionacrosstheorganization
Trainingand upskillingemployees
EnhancingITinfrastructure
Creatinga returnforshareholders
45%
43%
29%
28%
27%
28%
23%
20%
19%
16%
Improvingoperationsacrosstheorganization
Expandingourmarket
Improving
cybersecurityinfrastructure
Enhancingriskmanagementsystems
Exploringnew
businessmodels
Creatingnewjobs
Figure3
Q:Wheredoesyourcompanyplantoreinvestcostortimesavings
generatedthroughimplementationofGenAIcapabilities(selecttop3)?
(Jan./Feb.2024)N(Total)=1,982
12
13
2
Now:Keyfindings
Scalingup
Akeytovaluecreation,scalingincreasesGenerative
AI’simpactonthebusinessandexpandsitsuser
base—bothofwhichhaveastrongmultipliereffectonGenerativeAI’sbenefits.Yet,manyorganizationsfinditchallengingtomaketheleapfrompilotsandproofsofconcepttolarge-scaledeployment.
Scalingiscomplexandrequireseffortacrossavarietyofinterrelatedelementsspanningstrategy,process,people,dataandtechnology.AlthoughthechallengesassociatedwithscalingGenerativeAIarecommontomanydigital
transformationinitiatives,issuessuchasriskmanagementandgovernance,workforcetransformation,trustanddatamanagementtakeonevengreaterimportance.Whatworkedwellinthepastmightnotworkthesamewaywiththisnewtechnology.
Thescalingphaseiswhenpotentialbenefitsare
convertedintoreal-worldvalue.Itisalso,however,when
potentialissuesbecomereal-worldbarriers.AndwithGenerativeAI,manyofthosebarriersarestillbeingidentifiedandunderstood.
“Therearealwaysissuesthatemergethroughthe
adoptionandscalingtransitionthataren’texpected—
thequestionwehavetoconsiderishowhardaretheytoovercome,”saidachieftechnologyofficerweinterviewed.“Forexample,[oneofour]usecaseshadsometechnical,policyandcybersecurityissues,buttheywererelativelyeasytoovercome,sowescaled.Conversely,for[two
other]usecasesmoreissuesemergedlinkedtotheskillleveltoworkwiththeoutputsoftheAIsolution.These
havebeenhardertoaddress,soscalinghasbeenslower.”
Apublicsectorchiefinformationofficeroutlinedanotherapproach:“[Forus,successfulscalingis]buildingon
previoussuccessesandthentakingthoseinitiativestoanotherlevel.Expandingtootherareasofthe
organization,incorporatingmoredatasets,expandingtheuserbase(internalandexternal)toimproveuponexistingresults,andrefiningthecurrentsolutionformorevalue.
Thisphasedapproachgivesusasenseofassurancetheinvestmentisworthwhilebeforewecommitsignificantlymoreresources.”
Off-the-shelfGenerativeAIsolutionsforcommonuse
casessuchasofficeproductivityarearguablytheeasiesttodeployatscale,buttheystillrequiresubstantial
investment,effortandtraining.Foruniqueand/ormorestrategicGenerativeAIsolutionsandusecases,the
complexityandchallengesincreasebyleapsandbounds,alongwiththepotentialforgreaterreturns.
14
Now:Keyfindings
WorkforceaccesstoapprovedGenAItoolsandapplicationsremainslow.
Nearlyhalfofourrespondents(46%)reportedtheyprovidedapprovedGenerativeAIaccesstojustasmallportionoftheirworkforces(20%orless).Organizationsreporting“veryhigh”levelsofGenerativeAIexpertisearefurtheralong,withnearlyhalf(48%)
providingapprovedGenerativeAIaccesstoatleast40%oftheirworkforces.Evenforthese“expert”organizations,workeraccesstoapprovedtoolsremainstheexception,nottherule.
Ourexecutiveinterviewspointedtoanumberofreasonsforthisoveralllowpenetration
rate,mostlyrevolvingaroundriskversusreward—especiallydata-relatedrisks.Dothe
potentialrewardsofGenerativeAIjustifytherisks,andcantherisksbemitigated?In
particular,wefoundwidespreadconcernthatallowingworkerstousepubliclargelanguagemodels(LLMs)andGenerativeAItoolsmightleadtoproblemswithprotectionofintellectualpropertyandcustomerprivacy.
PercentageofworkforcewithaccesstoGenerativeAI
49%
46%
36%
29%28%27%
31%
16%16%14%
25%
23%24%
16%
w5%w3%1%3%4%
8%
6%7%
6%
2%
Upto20%20%–40%40%–60%60%–80%Morethan80%
Percentageoftheworkforce
Q:Howmuchofyouroverallworkforce,doyouestimate,haveaccesstoyourorganization’ssanctioned(approved)GenerativeAItools/applications?(Jan./Feb.2024)N(Total)=1,982,N(Veryhigh)=96,N(High)=606,N(Some)=1,021,N(Little)=257
76%
Overall
Littleexpertise
SomeexpertiseHighexpertise
Veryhighexpertise
Figure4
Now:Keyfindings
Otherconcernsthatcameupinourexecutiveinterviewsinclude:
?GenerativeAIoutputsthatcanbeunpredictableandsubjecttoinaccuracies(i.e.,“hallucinations”)—whichunderminetrust,particularlywhencombinedwithlackoftransparencyandexplainability
?PotentiallossofcontroloverwhatGenerativeAIappsarebeingusedwithintheorganizationandwhoisusingthem
?WorkerresistancetousingGenerativeAIduetolackoffamiliarityorconcernsaboutbeingreplaced
Giventhepotentialchallengesandrisks,acautious
approachtoallowingworkerstouseGenerativeAItoolsarguablymakessense.However,tightrestrictionson
GenerativeAIarebestviewedasatemporarystopgapmeasure—notaviablelong-termsolution.Logically,
anyworkerwithinternetaccesswillhaveaccesstopublicGenerativeAItoolsandcouldbeusingthemwithouttheiremployer’sconsent—potentiallyleaking
sensitivedataandintellectualpropertyintopublicLLMsinanentirelyuncontrolledway.Thisstatusislikelyto
continueintheabsenceofpracticalpoliciesforallowingandmanagingwidespreadGenerativeAIaccess.
Organizationsshouldbeactivelydevelopingsustainableprocessesandpoliciesforenablingubiquitousbut
responsibleGenerativeAIuseandmanagingthe
associatedrisksatscale.Widespreadbutcontrolled
accesstoGenerativeAIwillhelppeoplegetmore
comfortablewiththetechnologyandenablethemtounderstandwhatitcanandcannotdo—givingthemamorerealisticandinformedperspectivewhileopeningthedoortonewopportunitiesforGenerativeAIvaluecreationacrosstheenterprise.
15
“Ithasbeensurprisingtoseehowlowthebaristodosomething
quickanddirty—thisisboth
excitingandscary,butthebig
challengeistoscale—thisisa
wholenewballgame…butscalingishardwithoutcentralization.”
-DirectorofdatascienceandAIinthetechnologyindustry
16
3
Now:Keyfindings
Buildingtrust
Lackoftrustcontinuestobeoneofthebiggestbarrierstolarge-scaleadoptionanddeploymentofGenerativeAI.Inthiscontext,twokeyaspectsoftrustare:(1)trustinthequalityandreliabilityofGenerativeAI’soutput(supportedbyimprovedtransparencyandexplainability),and(2)trustfromworkersthatGenerativeAIwillmaketheirjobseasierandwon’treplacethem.
Regardingworkertrust,oneexecutiveweinterviewed
notedthat“oncepeoplestartseeingefficienciesand
thebenefitsthetoolshavetotheirwork,thatwilldriveadoptionandsustainedsuccess.”Inotherwords,greaterexposuretoGenerativeAItoolswillhelppeoplebecomemorecomfortablewiththetechnologyandunderstandhowitcanhelpthemdo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濱州學(xué)院《學(xué)業(yè)規(guī)劃指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)職業(yè)技術(shù)學(xué)院《中藥藥劑學(xué)(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版重型壓路機銷售與綠色認證合同3篇
- 二零二五年度「放心簽」專業(yè)人才尋訪服務(wù)合同2篇
- 二零二五年度WPS辦公借款合同模板行業(yè)定制
- 2025年度購物中心商業(yè)空間裝修升級合同2篇
- 2025版酒店客房用品售后服務(wù)及培訓(xùn)采購合同3篇
- 2025年度酒店承包經(jīng)營合同(含客房、餐飲及婚慶服務(wù))3篇
- 建筑企業(yè)分公司承包經(jīng)營合同
- 宣傳片拍攝制作合同
- 湖南2025年湖南機電職業(yè)技術(shù)學(xué)院合同制教師招聘31人歷年參考題庫(頻考版)含答案解析
- 黑龍江省哈爾濱市第六中學(xué)2025屆高考數(shù)學(xué)三模試卷含解析
- 【MOOC】數(shù)字邏輯設(shè)計及應(yīng)用-電子科技大學(xué) 中國大學(xué)慕課MOOC答案
- 傷口治療師進修匯報
- 研學(xué)活動協(xié)議書合同范本
- ISBAR輔助工具在交班中應(yīng)用
- AIGC行業(yè)報告:國內(nèi)外大模型和AI應(yīng)用梳理
- 湖北省十堰市2023-2024學(xué)年高二上學(xué)期期末調(diào)研考試 地理 含答案
- 寒假假前安全教育課件
- 專題03 一次函數(shù)圖像和性質(zhì)(十大類型)(題型專練)(原卷版)-A4
- 焊工(高級)職業(yè)技能鑒定考試題及答案(新版)
評論
0/150
提交評論