




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平行四邊形中,若則()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.3.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時(shí)籌算方法的不便,用其畢生心血寫(xiě)出《算法統(tǒng)宗》,可謂集成計(jì)算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問(wèn)題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.4.若樣本的平均數(shù)是10,方差為2,則對(duì)于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為85.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.6.若平面向量,滿足,則的最大值為()A. B. C. D.7.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長(zhǎng)為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.8.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.9.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.10.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.在的展開(kāi)式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.12.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△的三個(gè)內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為_(kāi)_________,最大值為_(kāi)__________.14.拋物線的焦點(diǎn)坐標(biāo)為_(kāi)_____.15.已知,為正實(shí)數(shù),且,則的最小值為_(kāi)_______________.16.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.19.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)記數(shù)列的前n項(xiàng)和為,,求數(shù)列的前n項(xiàng)和.20.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.21.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因?yàn)?
所以
,
,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).2、D【解析】
先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3、C【解析】
根據(jù)程序框圖依次計(jì)算得到答案.【詳解】,;,;,;,;,此時(shí)不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【點(diǎn)睛】本題考查了程序框圖的計(jì)算,意在考查學(xué)生的理解能力和計(jì)算能力.4、D【解析】
由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點(diǎn)睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.5、B【解析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.6、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.7、C【解析】
設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長(zhǎng)為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)垂直關(guān)系得到直線與平面所求角,再利用球心位置來(lái)求解出線段長(zhǎng),屬于中檔題.8、B【解析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.9、C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).10、B【解析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來(lái)求其體積,本題屬于基礎(chǔ)題.11、D【解析】
根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開(kāi)式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,12、A【解析】
易得,過(guò)B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過(guò)B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問(wèn)題,在作雙曲線離心率問(wèn)題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡(jiǎn)可得當(dāng)且僅當(dāng)時(shí),取等號(hào)又,所以令,則當(dāng),即時(shí),當(dāng),即時(shí),則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點(diǎn)睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點(diǎn)在于根據(jù)余弦定理以及不等式求出,考驗(yàn)分析能力以及邏輯思維能力,屬難題.14、【解析】
變換得到,計(jì)算焦點(diǎn)得到答案.【詳解】拋物線的標(biāo)準(zhǔn)方程為,,所以焦點(diǎn)坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題.15、【解析】
由,為正實(shí)數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實(shí)數(shù),且,可知,,.當(dāng)且僅當(dāng)時(shí)取等號(hào).的最小值為.故答案為:.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當(dāng)變形是解題的關(guān)鍵,屬于中檔題.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項(xiàng)為,則,則,,,,,因此,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對(duì)函數(shù)進(jìn)行求導(dǎo),,通過(guò)導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時(shí)時(shí)有極小值.(2)可知,進(jìn)而得到,令,通過(guò)導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實(shí)數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡(jiǎn)可得,所以.則,令,則.故當(dāng)時(shí),;當(dāng)時(shí),,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無(wú)極值點(diǎn);所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點(diǎn)存在性定理知在區(qū)間上,存在為函數(shù)的零點(diǎn),為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時(shí),,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時(shí),則在上遞增,故.綜上,的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對(duì)于恒成立的問(wèn)題,常轉(zhuǎn)化為求的最小值,使;對(duì)于恒成立的問(wèn)題,常轉(zhuǎn)化為求的最大值,使.18、(1);(2)【解析】
(1)當(dāng)時(shí),由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時(shí),不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,可得,令,則只需,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;故當(dāng)時(shí),取得最小值,即的最大值為.(2)依題意,當(dāng)時(shí),不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的解法,以及不等式的恒成立問(wèn)題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力.19、(1)見(jiàn)解析;(2)【解析】
(1)因?yàn)?,所以,所以,所以?shù)列是等差數(shù)列,設(shè)數(shù)列的公差為,由可得,因?yàn)槌傻缺葦?shù)列,所以,所以,所以,因?yàn)椋?,解得(舍去)或,所以,所以.?)由(1)知,,所以,所以.20、(1),;(2)【解析】
(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫(xiě)出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時(shí),.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問(wèn)題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.21、(1)證明見(jiàn)詳解;(2).【解析】
(1)取中點(diǎn)為,通過(guò)證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.22、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 主題班會(huì)演講稿(29篇)
- 開(kāi)學(xué)軍訓(xùn)學(xué)生心得體會(huì)2024年(5篇)
- 安全生產(chǎn)月獎(jiǎng)勵(lì)活動(dòng)方案(30篇)
- 三級(jí)教育培訓(xùn)-企業(yè)安全教育
- 2025年中考第一次模擬考試化學(xué)(西寧卷)(全解全析)
- 建筑材料運(yùn)輸合同書(shū)
- 2025年嘉峪關(guān)貨運(yùn)資格證試題及答案
- 產(chǎn)品采購(gòu)供應(yīng)協(xié)議具體條款約定事項(xiàng)說(shuō)明
- 國(guó)家電力建設(shè)工程施工合同
- 體育行業(yè)智能體育場(chǎng)館運(yùn)營(yíng)及管理方案
- 2024年遵義市國(guó)有資產(chǎn)經(jīng)營(yíng)管理有限公司招聘筆試沖刺題(帶答案解析)
- MOOC 社會(huì)學(xué)概論-西安交通大學(xué) 中國(guó)大學(xué)慕課答案
- 2024年度doors入門培訓(xùn)教程pdf
- JTT589-2004 水泥混凝土路面嵌縫密封材料
- (高清版)TDT 1042-2013 土地整治工程施工監(jiān)理規(guī)范
- 數(shù)據(jù)中心運(yùn)維解決方案
- 滁州城市職業(yè)學(xué)院?jiǎn)握小堵殬I(yè)技能測(cè)試》參考試題庫(kù)(含答案)
- 基于單片機(jī)控制的充電樁設(shè)計(jì)
- SB-T 11238-2023 報(bào)廢電動(dòng)汽車回收拆解技術(shù)要求
- 鋰電池正極材料行業(yè)分析
- 國(guó)家級(jí)省級(jí)化工園區(qū)列表
評(píng)論
0/150
提交評(píng)論