![2024年中考數(shù)學(xué)【高分·突破】壓軸題培優(yōu)專(zhuān)題精練壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似(壓軸突破)(原卷版+解析)_第1頁(yè)](http://file4.renrendoc.com/view14/M04/39/1F/wKhkGWaCKe2AHpwjAAFY77Ir15g125.jpg)
![2024年中考數(shù)學(xué)【高分·突破】壓軸題培優(yōu)專(zhuān)題精練壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似(壓軸突破)(原卷版+解析)_第2頁(yè)](http://file4.renrendoc.com/view14/M04/39/1F/wKhkGWaCKe2AHpwjAAFY77Ir15g1252.jpg)
![2024年中考數(shù)學(xué)【高分·突破】壓軸題培優(yōu)專(zhuān)題精練壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似(壓軸突破)(原卷版+解析)_第3頁(yè)](http://file4.renrendoc.com/view14/M04/39/1F/wKhkGWaCKe2AHpwjAAFY77Ir15g1253.jpg)
![2024年中考數(shù)學(xué)【高分·突破】壓軸題培優(yōu)專(zhuān)題精練壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似(壓軸突破)(原卷版+解析)_第4頁(yè)](http://file4.renrendoc.com/view14/M04/39/1F/wKhkGWaCKe2AHpwjAAFY77Ir15g1254.jpg)
![2024年中考數(shù)學(xué)【高分·突破】壓軸題培優(yōu)專(zhuān)題精練壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似(壓軸突破)(原卷版+解析)_第5頁(yè)](http://file4.renrendoc.com/view14/M04/39/1F/wKhkGWaCKe2AHpwjAAFY77Ir15g1255.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似壓軸突破——2024年【中考·沖刺】數(shù)學(xué)高頻熱點(diǎn)考點(diǎn)好題精編一、單選題1.如圖,與是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,,,若,則點(diǎn)C的坐標(biāo)為()A. B. C. D.2.如圖,已知,,若用判定和全等,則需要添加的條件是()
A. B. C. D.3.如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.連接,若平分,且正方形的面積為3,則正方形的面積為(
)A. B. C. D.154.如圖,在矩形紙片中,,對(duì)折矩形紙片,使與重合,折痕為,展平后再過(guò)點(diǎn)折疊,使點(diǎn)落在上的點(diǎn)處,折痕為.再次展平,連接,.有下列結(jié)論:①;②與相似;③的長(zhǎng)為;④若,分別為線(xiàn)段,上的動(dòng)點(diǎn)不包含端點(diǎn),則的最小值是.其中正確結(jié)論的序號(hào)是(
)
A.①②③④ B.①③④ C.①②④ D.①③5.如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),的面積為y(),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)時(shí),是等腰三角形;②;③時(shí),;④在運(yùn)動(dòng)過(guò)程中,使得是等腰三角形的P點(diǎn)一共有3個(gè);⑤當(dāng)與相似時(shí),.其中正確結(jié)論的序號(hào)是(
)A.①④⑤ B.①②④ C.①③④ D.①③⑤6.已知的一邊,另兩邊長(zhǎng)分別是3,4,若是邊上異于,的一點(diǎn),過(guò)點(diǎn)作直線(xiàn)截,截得的三角形與原相似,滿(mǎn)足這樣條件的直線(xiàn)有(
)條A.4 B.3 C.2 D.17.已知的三邊長(zhǎng)分別為,,,過(guò)的某個(gè)頂點(diǎn)將該三角形剪成兩個(gè)小三角形,再將這兩個(gè)小三角形拼成,若與不全等,則這條剪痕的長(zhǎng)可能為(
)A. B. C. D.8.如圖,以正方形的兩邊和為斜邊向外作兩個(gè)全等的直角三角形和,過(guò)點(diǎn)C作于點(diǎn)G,交于點(diǎn)H,過(guò)點(diǎn)B作于點(diǎn)I,過(guò)點(diǎn)D作,交延長(zhǎng)線(xiàn)于點(diǎn)K,交于點(diǎn)L.若,,則的長(zhǎng)為(
)A.6 B. C.7 D.二、填空題9.如果梯形的一條對(duì)角線(xiàn)把梯形分成的兩個(gè)三角形相似,那么我們稱(chēng)該梯形為“優(yōu)美梯形”.如果一個(gè)直角梯形是“優(yōu)美梯形”,它的上底等于2,下底等于4,那么它的周長(zhǎng)為.10.如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為4的等邊的邊OA在x軸上,C、D、E分別是AB、OB、OA上的動(dòng)點(diǎn),且滿(mǎn)足,,連接CD、CE,當(dāng)點(diǎn)E坐標(biāo)為時(shí),與相似.11.如圖,中,,D,E分別是邊的中點(diǎn),F(xiàn)為邊上一動(dòng)點(diǎn),于G,交于H.(1);(2)當(dāng)和相似時(shí),.12.如圖,在邊長(zhǎng)為4的等邊中,D、E、F分別是上的動(dòng)點(diǎn),且滿(mǎn)足,,連接.(1)的度數(shù)為;(2)當(dāng)時(shí),和相似.13.如圖,我國(guó)古代數(shù)學(xué)家趙爽的“弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,若小正方形和大正方形的面積分別為49和289,則圖中直角三角形內(nèi)切圓的半徑為.14.如圖,中,,,,點(diǎn)D為的中點(diǎn).如果點(diǎn)P在線(xiàn)段上以的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為,則當(dāng)與全等時(shí),v的值為.
15.如圖,,于A,于B,且,點(diǎn)P從B向A運(yùn)動(dòng),每秒鐘走,Q點(diǎn)從B向D運(yùn)動(dòng),每秒鐘走,點(diǎn)P,Q同時(shí)出發(fā),運(yùn)動(dòng)秒后,與全等.
16.如圖,我國(guó)古代偉大的數(shù)學(xué)家劉徽將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式,后人借助這種分割方法所得的圖形證明了勾股定理.若,,則圖中正方形的邊長(zhǎng)為.
三、解答題17.已知是矩形的邊上一點(diǎn),連接交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),交于點(diǎn).(1)如圖1,若,求的值.(用含的代數(shù)式表示)(2)如圖2,設(shè)的延長(zhǎng)線(xiàn)交于點(diǎn),移動(dòng)點(diǎn),使得.①求證:;②若,求證:.18.如圖,在等腰中,,為邊上一點(diǎn),為延長(zhǎng)線(xiàn)上一點(diǎn),且,連接,,,延長(zhǎng)交于點(diǎn),為的中點(diǎn),為射線(xiàn)上一點(diǎn),連接,交延長(zhǎng)線(xiàn)于點(diǎn),且.(1)求證:;(2)若為的中點(diǎn),求的值;(3)在(2)的條件下,當(dāng)時(shí),求證:.19.如圖,已知正方形的邊長(zhǎng)是4,點(diǎn)E是邊上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B、C重合),點(diǎn)F是射線(xiàn)上一點(diǎn),且,交于點(diǎn)P,,垂足為O,交射線(xiàn)于點(diǎn)Q,設(shè).
(1)若點(diǎn)E是的中點(diǎn),求的值;(2)若點(diǎn)Q在邊上,求的長(zhǎng)(用含有m的代數(shù)式表示);(3)連接,若與相似,求的長(zhǎng).20.閱讀與思考請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).規(guī)定:在一個(gè)三角形中,若一個(gè)內(nèi)角是另一個(gè)內(nèi)角度數(shù)的n倍,則稱(chēng)三角形為“n倍角三角形”.當(dāng)時(shí),稱(chēng)為“1倍角三角形”,顯然等腰三角形是“1倍角三角形”;當(dāng)時(shí),稱(chēng)為“2倍角三角形”,小康通過(guò)探索后發(fā)現(xiàn):“2倍角三角形”的三邊有如下關(guān)系.如圖,在中,所對(duì)的邊分別為,若,則.下面是小康對(duì)“2倍角三角形”的結(jié)論的兩種探索證明過(guò)程:證法1:如圖1,作的平分線(xiàn),∴.
設(shè),則.證法2:如圖2,延長(zhǎng)到點(diǎn),使得,連接,……
任務(wù):(1)上述材料中的證法1是通過(guò)作輔助線(xiàn),構(gòu)造出__________三角形來(lái)加以證明的(填“全等”或“相似”).(2)請(qǐng)補(bǔ)全證法2剩余的部分.壓軸熱點(diǎn)考點(diǎn)09三角形的全等和相似壓軸突破——2024年【中考·沖刺】數(shù)學(xué)高頻熱點(diǎn)考點(diǎn)好題精編一、單選題1.如圖,與是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,,,若,則點(diǎn)C的坐標(biāo)為()A. B. C. D.【答案】D【分析】利用已知條件求出D點(diǎn)坐標(biāo),再證明為等腰直角三角形,連接BC,根據(jù)“三線(xiàn)合一”性質(zhì)求出,進(jìn)一步可求出C點(diǎn)坐標(biāo).【詳解】解:∵與是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,且,∴,∵,,∴為等腰直角三角形,連接BC,根據(jù)“三線(xiàn)合一”性質(zhì)可知,∴點(diǎn)C的坐標(biāo)為:.故選:D.【點(diǎn)睛】此題考查位似變換的性質(zhì),正確理解位似與相似的關(guān)系,理解關(guān)于原點(diǎn)位似的兩個(gè)圖形對(duì)應(yīng)點(diǎn)坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.2.如圖,已知,,若用判定和全等,則需要添加的條件是()
A. B. C. D.【答案】A【分析】由圖示可知為公共邊,若想用判定證明和全等,必須添加.【詳解】解:∵,,∴,.,符合兩直角三角形全等的判定定理,故該選項(xiàng)符合題意;.,,不是兩直角三角形全等的判定定理,故該選項(xiàng)不符合題意;.,不符合兩直角三角形全等的判定定理,故該選項(xiàng)不符合題意;.,,不是兩直角三角形全等的判定定理,故該選項(xiàng)不符合題意;故選:.【點(diǎn)睛】此題考查了對(duì)全等三角形判定定理的理解和掌握,熟記全等三角形的判定定理是解題的關(guān)鍵.3.如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.連接,若平分,且正方形的面積為3,則正方形的面積為(
)A. B. C. D.15【答案】A【分析】設(shè)直角三角形的長(zhǎng)直角邊是,短直角邊是,得到,由,得到,由,得到,因此,由,得到,即可求出,的值,由勾股定理即可解決問(wèn)題.【詳解】解:設(shè)直角三角形的長(zhǎng)直角邊是,短直角邊是,正方形的邊長(zhǎng)是,正方形的面積為3,,,平分,,,,,,,,,,,,,,,,,,,,,,,正方形的面積是.故選:A.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,關(guān)鍵是求出直角三角形的直角邊的長(zhǎng),由勾股定理即可解決問(wèn)題.4.如圖,在矩形紙片中,,對(duì)折矩形紙片,使與重合,折痕為,展平后再過(guò)點(diǎn)折疊,使點(diǎn)落在上的點(diǎn)處,折痕為.再次展平,連接,.有下列結(jié)論:①;②與相似;③的長(zhǎng)為;④若,分別為線(xiàn)段,上的動(dòng)點(diǎn)不包含端點(diǎn),則的最小值是.其中正確結(jié)論的序號(hào)是(
)
A.①②③④ B.①③④ C.①②④ D.①③【答案】C【分析】①如圖,連接,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)得到,根據(jù)折疊的性質(zhì)得到,推理出為等邊三角形,得到,于是得到,即結(jié)論①正確;②根據(jù)折疊的性質(zhì),可得,,根據(jù)相似三角形的判定定理得到與相似,即結(jié)論②正確;③解直角三角形得到,即結(jié)論③錯(cuò)誤;④過(guò)作于交于,則此時(shí)的值最小,且,解直角三角形得到的最小值是.即結(jié)論④正確.【詳解】解:①如圖,連接,
垂直平分,,根據(jù)折疊的性質(zhì),可得,.為等邊三角形,,,即結(jié)論①正確;②根據(jù)折疊的性質(zhì),可得,,,,,,,與相似,即結(jié)論②正確;③,,,,即結(jié)論③錯(cuò)誤;④點(diǎn)和點(diǎn)關(guān)于對(duì)稱(chēng),過(guò)點(diǎn)作于交于,此時(shí)的值最小,且,,,,的最小值是即結(jié)論④正確;綜上分析可知,正確的是①②④,故C正確.故選:C.【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)的應(yīng)用以及矩形的性質(zhì)和應(yīng)用,還考查了折疊的性質(zhì)和應(yīng)用.5.如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),的面積為y(),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)時(shí),是等腰三角形;②;③時(shí),;④在運(yùn)動(dòng)過(guò)程中,使得是等腰三角形的P點(diǎn)一共有3個(gè);⑤當(dāng)與相似時(shí),.其中正確結(jié)論的序號(hào)是(
)A.①④⑤ B.①②④ C.①③④ D.①③⑤【答案】D【分析】由圖2可知,整個(gè)運(yùn)動(dòng)過(guò)程分為段,故點(diǎn)到達(dá)時(shí),點(diǎn)同時(shí)到達(dá),由此可知,,,由勾股定理求得,由此分別分析各命題的正誤.【詳解】解:由圖可知,,,四邊形是矩形,,.,,.對(duì)于①,當(dāng)時(shí),點(diǎn)在上,點(diǎn)在上,且,是等腰三角形,①正確;對(duì)于②,,②錯(cuò)誤;對(duì)于③,,,當(dāng)時(shí),點(diǎn)在上,點(diǎn)在處,,③正確;對(duì)于④,如圖,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交于,當(dāng)點(diǎn)位于處時(shí),是等腰三角形;以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交于,當(dāng)點(diǎn)位于處時(shí),是等腰三角形;作的垂直平分線(xiàn),交于,交于,當(dāng)點(diǎn)位于或處時(shí),是等腰三角形.綜上,運(yùn)動(dòng)過(guò)程中,使得是等腰三角形的點(diǎn)一共有個(gè),④錯(cuò)誤;對(duì)于⑤,是直角三角形,當(dāng)且僅當(dāng)點(diǎn)在上時(shí),與相似,此時(shí),,且,或,即或,解得或(舍去).當(dāng)與相似時(shí),,⑤正確.綜上可得,正確的有:①③⑤.故選:D.【點(diǎn)睛】本題考查了矩形的性質(zhì),函數(shù)圖象與動(dòng)點(diǎn)問(wèn)題,相似三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,一次函數(shù)的應(yīng)用,勾股定理,熟練掌握相關(guān)性質(zhì)是解題的關(guān)鍵.6.已知的一邊,另兩邊長(zhǎng)分別是3,4,若是邊上異于,的一點(diǎn),過(guò)點(diǎn)作直線(xiàn)截,截得的三角形與原相似,滿(mǎn)足這樣條件的直線(xiàn)有(
)條A.4 B.3 C.2 D.1【答案】B【分析】由,另兩邊長(zhǎng)分別是3,4,可知△ABC是直角三角形,過(guò)點(diǎn)P作直線(xiàn)與另一邊相交,使所得的三角形與原三角形有一個(gè)公共角,只要再作一個(gè)直角就可以.【詳解】解:如圖,∵,另兩邊長(zhǎng)分別是3,4,又∵,∴,即△ABC是直角三角形,∵過(guò)P點(diǎn)作直線(xiàn)截△ABC,則截得的三角形與△ABC有一公共角,∴只要再作一個(gè)直角即可使截得的三角形與Rt△ABC相似,∴過(guò)點(diǎn)P可作AB的垂線(xiàn)、AC的垂線(xiàn)、BC的垂線(xiàn),共3條直線(xiàn).故選:B.【點(diǎn)睛】本題主要考查勾股定理的逆定理、三角形相似判定定理及其運(yùn)用,解題時(shí)運(yùn)用了兩角法(有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似)來(lái)判定兩個(gè)三角形相似.7.已知的三邊長(zhǎng)分別為,,,過(guò)的某個(gè)頂點(diǎn)將該三角形剪成兩個(gè)小三角形,再將這兩個(gè)小三角形拼成,若與不全等,則這條剪痕的長(zhǎng)可能為(
)A. B. C. D.【答案】C【分析】本題考查了折疊問(wèn)題,勾股定理及其逆定理的應(yīng)用;根據(jù)勾股定理的逆定理得出是直角三角形,且.根據(jù)題意可得這條剪痕可能是或邊的中線(xiàn).分別根據(jù)中線(xiàn)的性質(zhì)以及勾股定理求得,即可求解.【詳解】解:如圖,中,,,,,是直角三角形,且.過(guò)的某個(gè)頂點(diǎn)將該三角形剪成兩個(gè)小三角形,再將這兩個(gè)小三角形拼成,與不全等,這條剪痕可能是或邊的中線(xiàn).如果這條剪痕是邊的中線(xiàn),那么,,,;如果這條剪痕是邊的中線(xiàn),那么,,,;這條剪痕的長(zhǎng)可能為.故選:C.8.如圖,以正方形的兩邊和為斜邊向外作兩個(gè)全等的直角三角形和,過(guò)點(diǎn)C作于點(diǎn)G,交于點(diǎn)H,過(guò)點(diǎn)B作于點(diǎn)I,過(guò)點(diǎn)D作,交延長(zhǎng)線(xiàn)于點(diǎn)K,交于點(diǎn)L.若,,則的長(zhǎng)為(
)A.6 B. C.7 D.【答案】D【分析】過(guò)點(diǎn)A作于點(diǎn)M,連接,,設(shè),先證明四邊形是矩形,四邊形和均是矩形,可得,,再根據(jù),可得四邊形是正方形,四邊形是正方形,從而得到,,,,再由,可得,再根據(jù),可得,從而得到,,即可求解.【詳解】解:如圖,過(guò)點(diǎn)A作于點(diǎn)M,連接,,根據(jù)題意得:,∴,,設(shè),∵,,,∴,∴,∵四邊形是正方形,
∴,,,∴,,∴,,∴,同理,∴,∴,∴四邊形是矩形,同理四邊形和均是矩形,∴,∴,
∴,∴,∴四邊形是正方形,∴,,同理四邊形是正方形,∴,∴,,,
∴,∵,∴,即,∴,∵,∴,∴,即,
∴,即,解得:或0(舍去),∴,∴.故選:D【點(diǎn)睛】本題主要考查了正方形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),熟練掌握正方形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)是解題的關(guān)鍵.二、填空題9.如果梯形的一條對(duì)角線(xiàn)把梯形分成的兩個(gè)三角形相似,那么我們稱(chēng)該梯形為“優(yōu)美梯形”.如果一個(gè)直角梯形是“優(yōu)美梯形”,它的上底等于2,下底等于4,那么它的周長(zhǎng)為.【答案】/【分析】根據(jù)“優(yōu)美梯形”的定義,得到,從而得到,,推出,算出,再根據(jù)勾股定理,得到、的長(zhǎng),即可得到該直角梯形的周長(zhǎng).【詳解】解:根據(jù)題意,作圖如下,為直角梯形,,,,,直角梯形是“優(yōu)美梯形”,,,,,,,,在中,,在中,,該梯形的周長(zhǎng),故答案為:.【點(diǎn)睛】本題考查了直角梯形的性質(zhì),相似三角形的性質(zhì),勾股定理,熟練掌握相似三角形的性質(zhì)是解題關(guān)鍵.10.如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為4的等邊的邊OA在x軸上,C、D、E分別是AB、OB、OA上的動(dòng)點(diǎn),且滿(mǎn)足,,連接CD、CE,當(dāng)點(diǎn)E坐標(biāo)為時(shí),與相似.【答案】或【分析】因?yàn)镈E∥AB得到∠DEC=∠ACE,所以△CDE與△ACE相似分兩種情況分類(lèi)討論.【詳解】∵DE∥AB,∴∠DEC=∠ACE,△ODE∽△OBA,∴△ODE也是等邊三角形,則OD=OE=DE,設(shè)E(a,0),則OE=OD=DE=a,BD=AE=4?a,∵△CDE與△ACE相似,分兩種情況討論:①當(dāng)△CDE∽△EAC時(shí),則∠DCE=∠CEA,∴CD∥AE,∴四邊形AEDC是平行四邊形,∴AC=a,∵BD=2AC,∴4?a=2a,∴,∴;②當(dāng)△CDE∽△AEC時(shí),∠DCE=∠EAC=60°=∠B,∴∠BCD+∠ECA=180°?60°=120°,又∵∠BDC+∠BCD=180°?∠B=120°,∴∠BCD+∠ECA=∠BDC+∠BCD,∴∠ECA=∠BDC,∴△BDC∽△ACE,∴,∴BC=2AE=2(4?a)=8?2a,∴,∴,∴.綜上所述,點(diǎn)E的坐標(biāo)為或.故答案為:或.【點(diǎn)睛】本題主要考查相似三角形,考慮分類(lèi)討論是本題的關(guān)鍵.11.如圖,中,,D,E分別是邊的中點(diǎn),F(xiàn)為邊上一動(dòng)點(diǎn),于G,交于H.(1);(2)當(dāng)和相似時(shí),.【答案】或【分析】(1)過(guò)A作于M交于N,利用三角形相似和面積公式,結(jié)合矩形的判定和性質(zhì)計(jì)算即可.(2)根據(jù)三角形相似的判定和性質(zhì),分類(lèi)計(jì)算即可.【詳解】(1)過(guò)A作于M交于N,∵,∴,∵D,E分別是邊的中點(diǎn),∴,∴,,∴,∴,∵,,,∴四邊形是矩形,∴,∵,∴,∴,∴,故答案為:.(2)∵,∴,∴,∵,∴,∴,∴,當(dāng)和相似時(shí),①,∴,∴.②,∴,∴,∴,綜上所述,或,故答案為:或.【點(diǎn)睛】本題考查了三角形相似的判定和性質(zhì),勾股定理,三角形中位線(xiàn)定理,矩形的判定和性質(zhì),熟練掌握三角形相似的判定和性質(zhì)是解題的關(guān)鍵.12.如圖,在邊長(zhǎng)為4的等邊中,D、E、F分別是上的動(dòng)點(diǎn),且滿(mǎn)足,,連接.(1)的度數(shù)為;(2)當(dāng)時(shí),和相似.【答案】/30度或【分析】(1)找的中點(diǎn)G,連接,根據(jù)為等邊三角形和,可證為等邊三角形,即可求出答案.(2)分兩種情況討論:①若,則,可證出四邊形是平行四邊形,即可求出答案;②若,則,利用銳角函數(shù)值即可求解.【詳解】解:(1)找的中點(diǎn)G,連接,如圖所示,∵為等邊三角形,,∴,,∵,∴,∴為等邊三角形,∴,∴;解:(2)由(1)知,∵是等邊三角形,,∴,∴是等邊三角形,∴,∴,①若,∴,則,∵,,∴四邊形是平行四邊形,是等邊三角形,∴,∵等邊的邊長(zhǎng)是4,則,∴,∴;②若,∴,則,∵,∴,∵等邊邊長(zhǎng)為4,則,∴,.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),解直角三角形,等邊三角形的性質(zhì),掌握分類(lèi)討論思想是解題關(guān)鍵.13.如圖,我國(guó)古代數(shù)學(xué)家趙爽的“弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,若小正方形和大正方形的面積分別為49和289,則圖中直角三角形內(nèi)切圓的半徑為.【答案】3【分析】本題主要考查了三角形的內(nèi)切圓的性質(zhì),正方形的性質(zhì)及勾股定理的應(yīng)用,同時(shí)也利用了完全平方公式和一元二次方程,綜合性強(qiáng),能力要求高.解決本題的關(guān)鍵是掌握三角形的內(nèi)切圓的性質(zhì).設(shè)內(nèi)切圓的圓心為O,連接、,則四邊形為正方形,設(shè)直角三角形內(nèi)切圓的半徑為r,然后利用內(nèi)切圓和直角三角形的性質(zhì)得到,根據(jù)已知條件得,,接著利用完全平方公式進(jìn)行代數(shù)變形,最后解關(guān)于r的一元二次方程即可.【詳解】解:如圖,設(shè)內(nèi)切圓的圓心為O,連接、,,則四邊形為正方形,設(shè)直角三角形內(nèi)切圓的半徑為r,,,,,,而,①,小正方形和大正方形的面積分別為49和289,,,②,負(fù)值舍去,把代入①得,③,把③代入②中,得:,,負(fù)值舍去,直角三角形內(nèi)切圓的半徑為3,故答案為:14.如圖,中,,,,點(diǎn)D為的中點(diǎn).如果點(diǎn)P在線(xiàn)段上以的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為,則當(dāng)與全等時(shí),v的值為.
【答案】或【分析】點(diǎn)P在線(xiàn)段上以的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q的運(yùn)動(dòng)速度為,運(yùn)動(dòng)時(shí)間為,則,,,因?yàn)椋瑒t再利用全等三角形的判定方法得到當(dāng),時(shí),,即,;當(dāng),時(shí),,即,,然后分別解方程即可.【詳解】解:運(yùn)動(dòng)時(shí)間為,由題意得,,,,因?yàn)?,?dāng)時(shí),則,,即,,解得,;當(dāng)時(shí),,,即,,解得,;故當(dāng)與全等時(shí),v的值為或,故答案為:或.【點(diǎn)睛】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法是解決問(wèn)題的關(guān)鍵.選用哪一種方法,取決于題目中的已知條件.也考查了等腰三角形的性質(zhì).15.如圖,,于A,于B,且,點(diǎn)P從B向A運(yùn)動(dòng),每秒鐘走,Q點(diǎn)從B向D運(yùn)動(dòng),每秒鐘走,點(diǎn)P,Q同時(shí)出發(fā),運(yùn)動(dòng)秒后,與全等.
【答案】6【分析】設(shè)運(yùn)動(dòng)x秒鐘后與全等;則,,則,分兩種情況:①若,則,此時(shí),;②若,則,得出,,即可得出結(jié)果.【詳解】解:∵于A,于,∴,設(shè)運(yùn)動(dòng)x秒鐘后與全等;則,,則,分兩種情況:①若,則,∴,,∴,∴;②若,則,解得:,∴,此時(shí)與不全等;綜上所述:運(yùn)動(dòng)6秒鐘后與全等;故答案為:6.【點(diǎn)睛】本題考查了三角形全等的判定方法、解方程等知識(shí);本題難度適中,需要進(jìn)行分類(lèi)討論.16.如圖,我國(guó)古代偉大的數(shù)學(xué)家劉徽將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式,后人借助這種分割方法所得的圖形證明了勾股定理.若,,則圖中正方形的邊長(zhǎng)為.
【答案】2【分析】根據(jù)題意可得,,則,設(shè)正方形的邊長(zhǎng)為x,則,,在中,利用勾股定理列方程求解即可.【詳解】解:由題意可得:,,∴,設(shè)正方形的邊長(zhǎng)為x,則,,在中,,即,解得:,(舍),∴正方形的邊長(zhǎng)為2,故答案為:2.
【點(diǎn)睛】本題考查勾股定理的應(yīng)用、解一元二次方程,根據(jù)勾股定理列方程是解題的關(guān)鍵.三、解答題17.已知是矩形的邊上一點(diǎn),連接交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),交于點(diǎn).(1)如圖1,若,求的值.(用含的代數(shù)式表示)(2)如圖2,設(shè)的延長(zhǎng)線(xiàn)交于點(diǎn),移動(dòng)點(diǎn),使得.①求證:;②若,求證:.【答案】(1)(2)①見(jiàn)解析;②見(jiàn)解析【分析】(1)證明則.即可得到結(jié)論;(2)①證明及即可證明.②過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn).證明,則,進(jìn)一步得到.根據(jù)角平分線(xiàn)的性質(zhì)得到.證明四邊形是矩形,則,即可得到結(jié)論;此題主要考查相似三角形的判定和性質(zhì)、矩形的判定和性質(zhì)、角平分線(xiàn)的性質(zhì)等知識(shí),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.【詳解】(1)在矩形中,,,,.;(2)①,,由(1)知,,∴.②過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn),,,,,,,,,,四邊形是矩形,,.18.如圖,在等腰中,,為邊上一點(diǎn),為延長(zhǎng)線(xiàn)上一點(diǎn),且,連接,,,延長(zhǎng)交于點(diǎn),為的中點(diǎn),為射線(xiàn)上一點(diǎn),連接,交延長(zhǎng)線(xiàn)于點(diǎn),且.(1)求證:;(2)若為的中點(diǎn),求的值;(3)在(2)的條件下,當(dāng)時(shí),求證:.【答案】(1)見(jiàn)解析(2)(3)見(jiàn)解析【分析】(1)本題考查三角形全等的判定,根據(jù)等腰三角形的性質(zhì)的到邊相等角相等,結(jié)合即可得到證明;(2)本題考查三角形相似的性質(zhì)與判定,證明,結(jié)合三角形全等的性質(zhì)得到即可得到答案;(3)本題考查三角形相似的性質(zhì)與判定,延長(zhǎng)至點(diǎn),使得,連接,先證,再證,即可得到答案;【詳解】(1)證明:∵在等腰中,,,,,,;(2)解:由(1)知,,,,,為的中點(diǎn),垂直平分,,在中,,,,,;(3)證明:如圖,延長(zhǎng)至點(diǎn),使得,連接,,,,由(1)可知,∴,∴,,由(2)可知,,,,,,即.19.如圖,已知正方形的邊長(zhǎng)是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海小學(xué)二年級(jí)上口算練習(xí)題
- 一年級(jí)工作要點(diǎn)計(jì)劃月歷表范文(31篇)
- 中級(jí)經(jīng)濟(jì)師金融專(zhuān)業(yè)-中級(jí)經(jīng)濟(jì)師考試金融專(zhuān)業(yè)實(shí)務(wù)模擬試卷6
- 2025至2030年中國(guó)干黑木耳數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 電力技術(shù)監(jiān)督專(zhuān)責(zé)人員上崗資格考試復(fù)習(xí)測(cè)試卷附答案
- 貨檢中級(jí)工理論題庫(kù)練習(xí)試卷附答案
- 2025至2031年中國(guó)法式鉗工錘行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025至2030年中國(guó)脂肪醇酰胺數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)羊皮罩?jǐn)?shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年工程王輪胎項(xiàng)目投資價(jià)值分析報(bào)告
- 快速入門(mén)穿越機(jī)-讓你迅速懂穿越機(jī)
- 水利安全生產(chǎn)風(fēng)險(xiǎn)防控“六項(xiàng)機(jī)制”右江模式經(jīng)驗(yàn)分享
- 2024年四川省成都市高新區(qū)中考數(shù)學(xué)二診試卷
- 幼兒園衛(wèi)生保健開(kāi)學(xué)培訓(xùn)
- 食材配送服務(wù)售后服務(wù)方案
- 礦井主要災(zāi)害事故防治應(yīng)急避災(zāi)知識(shí)培訓(xùn)課件
- 不老莓行業(yè)分析
- STARCCM基礎(chǔ)培訓(xùn)教程
- 2016-2023年婁底職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 貴陽(yáng)市2024年高三年級(jí)適應(yīng)性考試(一)一模英語(yǔ)試卷(含答案)
- 地理標(biāo)志專(zhuān)題通用課件
評(píng)論
0/150
提交評(píng)論