甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第1頁
甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第2頁
甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第3頁
甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第4頁
甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

甘肅省隴南市第八中學(xué)2024年中考數(shù)學(xué)四模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.若反比例函數(shù)的圖像經(jīng)過點(diǎn),則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.2.如圖,將RtABC繞直角項(xiàng)點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°3.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.4.下列計(jì)算正確的有()個(gè)①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.35.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.16.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.07.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點(diǎn)B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點(diǎn),則y1>y1.其中正確的個(gè)數(shù)是()A.1 B.3 C.4 D.58.如圖,半徑為3的⊙A經(jīng)過原點(diǎn)O和點(diǎn)C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點(diǎn),則tan∠OBC為()A. B.2 C. D.9.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)10.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.二十四節(jié)氣列入聯(lián)合國教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.太陽運(yùn)行的軌道是一個(gè)圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個(gè)節(jié)氣,統(tǒng)稱“二十四節(jié)氣”.這一時(shí)間認(rèn)知體系被譽(yù)為“中國的第五大發(fā)明”.如圖,指針落在驚蟄、春分、清明區(qū)域的概率是_____.12.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個(gè)底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.13.分解因式:x3-9x14.如圖,在矩形ABCD中,AB=,E是BC的中點(diǎn),AE⊥BD于點(diǎn)F,則CF的長是_________.15.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)16.某文化用品商店計(jì)劃同時(shí)購進(jìn)一批A、B兩種型號的計(jì)算器,若購進(jìn)A型計(jì)算器10只和B型計(jì)算器8只,共需要資金880元;若購進(jìn)A型計(jì)算器2只和B型計(jì)算器5只,共需要資金380元.則A型號的計(jì)算器的每只進(jìn)價(jià)為_____元.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)M是拋物線上的動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時(shí),求點(diǎn)M的坐標(biāo);②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.18.(8分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時(shí)針方向連續(xù)跳幾個(gè)邊長。如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長,落在圈D;若第二次擲得2,就從圈D開始順時(shí)針連續(xù)跳2個(gè)邊長,落得圈B;…設(shè)游戲者從圈A起跳.小賢隨機(jī)擲一次骰子,求落回到圈A的概率P1.小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?19.(8分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點(diǎn)D是拋物線上的一動點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請求出點(diǎn)D的坐標(biāo),若不存在,說明理由.21.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.22.(10分)如圖,AB=AD,AC=AE,BC=DE,點(diǎn)E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.23.(12分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個(gè)三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動,記點(diǎn)P經(jīng)過的路程為s.當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,試求的值.24.計(jì)算:÷(﹣1)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點(diǎn),則有∴圖象過第二、四象限,

∵k=-1,

∴一次函數(shù)y=x-1,

∴圖象經(jīng)過第一、三、四象限,

故選:D.【點(diǎn)睛】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進(jìn)行判斷;2、B【解析】

根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項(xiàng)點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.3、A【解析】

根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.4、C【解析】

根據(jù)積的乘方法則,多項(xiàng)式乘多項(xiàng)式的計(jì)算法則,完全平方公式,合并同類項(xiàng)的計(jì)算法則,乘方的定義計(jì)算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯(cuò)誤;②(x﹣2)(x+3)=x2+x﹣6,錯(cuò)誤;③(x﹣2)2=x2﹣4x+4,錯(cuò)誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計(jì)算正確的有2個(gè).故選C.【點(diǎn)睛】考查了積的乘方,多項(xiàng)式乘多項(xiàng)式,完全平方公式,合并同類項(xiàng),乘方,關(guān)鍵是熟練掌握計(jì)算法則正確進(jìn)行計(jì)算.5、A【解析】

根據(jù)兩個(gè)負(fù)數(shù)比較大小,絕對值大的負(fù)數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯(cuò)誤;C、0>﹣1,故C錯(cuò)誤;D、1>﹣1,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負(fù)數(shù),注意兩個(gè)負(fù)數(shù)比較大小,絕對值大的負(fù)數(shù)反而?。?、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點(diǎn):無理數(shù)的定義.7、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點(diǎn)可知:,∴,∴,故①正確;②拋物線與軸只有一個(gè)交點(diǎn),∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點(diǎn)睛】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運(yùn)用數(shù)形結(jié)合的思想.8、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點(diǎn):圓周角定理;銳角三角函數(shù)的定義.9、B【解析】

解:∵二次函數(shù)y=ax3+bx+c(a≠3)過點(diǎn)(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側(cè),∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個(gè)不同的交點(diǎn),∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個(gè)交點(diǎn)為(﹣3,3),設(shè)另一個(gè)交點(diǎn)為(x3,3),則x3>3,由圖可知,當(dāng)﹣3<x<x3時(shí),y>3;當(dāng)x>x3時(shí),y<3.∴當(dāng)x>﹣3時(shí),y>3的結(jié)論錯(cuò)誤.綜上所述,正確的結(jié)論有①②③④.故選B.10、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點(diǎn)睛:本題考查的是三角形的外接圓與外心、扇形面積的計(jì)算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

首先由圖可得此轉(zhuǎn)盤被平分成了24等份,其中驚蟄、春分、清明區(qū)域有3份,然后利用概率公式求解即可求得答案.【詳解】∵如圖,此轉(zhuǎn)盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【點(diǎn)睛】此題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.12、18°【解析】試題分析:根據(jù)圓錐的展開圖的圓心角計(jì)算法則可得:扇形的圓心角=1040考點(diǎn):圓錐的展開圖13、x【解析】試題分析:要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x214、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點(diǎn),過F作FG⊥BC于G,故答案為15、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).16、40【解析】

設(shè)A型號的計(jì)算器的每只進(jìn)價(jià)為x元,B型號的計(jì)算器的每只進(jìn)價(jià)為y元,根據(jù)“若購進(jìn)A型計(jì)算器10只和B型計(jì)算器8只,共需要資金880元;若購進(jìn)A型計(jì)算器2只和B型計(jì)算器5只,共需要資金380元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【詳解】設(shè)A型號的計(jì)算器的每只進(jìn)價(jià)為x元,B型號的計(jì)算器的每只進(jìn)價(jià)為y元,根據(jù)題意得:,解得:.答:A型號的計(jì)算器的每只進(jìn)價(jià)為40元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)(1,4)(2)①點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點(diǎn)B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點(diǎn)D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點(diǎn)M在x軸上方時(shí),=,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點(diǎn)M在x軸下方時(shí),=,解得m=﹣或m=3(舍棄),∴點(diǎn)M(﹣,﹣),綜上所述,滿足條件的點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②如圖中,∵M(jìn)N∥x軸,∴點(diǎn)M、N關(guān)于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當(dāng)﹣m2+2m+3=1﹣m時(shí),解得m=,當(dāng)﹣m2+2m+3=m﹣1時(shí),解得m=,∴滿足條件的m的值為或.【點(diǎn)睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.18、(1)落回到圈A的概率P1【解析】

(1)由共有6種等可能的結(jié)果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;

(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵擲一次骰子有6種等可能的結(jié)果,只有擲的4時(shí),才會落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36種等可能的結(jié)果,當(dāng)兩次擲得的數(shù)字之和為4的倍數(shù),即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一樣【點(diǎn)睛】本題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關(guān)于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點(diǎn)E,則GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解答本題要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.20、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點(diǎn)坐標(biāo)為(1,2)或(4,﹣25).【解析】

(1)設(shè)交點(diǎn)式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計(jì)算出AC=,BC=,接著利用面積法計(jì)算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計(jì)算出BH=,CH=,再根據(jù)兩點(diǎn)間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時(shí),y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當(dāng)n=﹣時(shí),m=2n+=,此時(shí)H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時(shí)D點(diǎn)坐標(biāo)為(4,﹣25);當(dāng)n=時(shí),m=2n+=,此時(shí)H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時(shí)D點(diǎn)坐標(biāo)為(1,2).綜上所述:D點(diǎn)坐標(biāo)為(1,2)或(4,﹣25).【點(diǎn)睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)和相似三角形的判定的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點(diǎn)問題轉(zhuǎn)化為解方程組的問題;理解坐標(biāo)與圖形性質(zhì);會運(yùn)用分類討論的思想解決數(shù)學(xué)問題.21、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時(shí),則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時(shí),則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時(shí),AM最短為,又∵當(dāng)BE=x=3=BC時(shí),∴點(diǎn)E為BC的中點(diǎn),∴AE⊥BC,∴AE=,此時(shí),EF⊥AC,∴EM=,S△AEM=.22、(1)詳見解析;(2)詳見解析.【解析】

(1)用“SSS”證明即可;(2)借助全等三角形的性質(zhì)及角的和差求出∠DAB=∠EAC,再利用三角形內(nèi)角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.【詳解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論