版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
StaticsStaticsofdeformablebodyChapter8
ShearandTorsionContents8.1Theconceptofshear8.2Practicalcalculationofshearand
bearing8.3Theconceptoftorsion8.4Torqueandtorquediagram8.5Torsionofthin-walledcylinders8.6Stressanddeformationduringtorsionofcircularshafts 8.7Torsionalstrengthandrigidity SmallshearingmachineBoltedconnectionRivetedconnectionPinconnectionFlatkeyconnection8.1TheconceptofshearFFmn0FFFsinglesheardoubleshearBearingbearingstress
:pressureonthebearingsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfaceFFBearingsurface8.2Practicalcalculationofshearandbearing1、Practicalcalculationofshear
FFQtTheshearstressτisuniformlydistributedontheshearsurface.SotheformulaofshearstressiswhereAistheareaoftheshearsurface.Thisshearstressisbasedonassumptionsandisnotthetrueshearstress,whichisusuallyreferredtothenominalshearstress.Whentheshearstressτontheshearplanereachesacertainvalue,theshearmemberwillbedamagedbyshear.Allowableshearstress
Thisistheshearstrengthcondition.Iftheshearultimatestressofthematerialisandnisthesafetyfactorthentheallowableshearstressofthematerial
isExperimentalresultsshowthattheshearultimatestrengthofthematerialhasanapproximateproportionalrelationshipwiththetensile(compressive)ultimatestrength.Plasticmaterials:Brittlematerials:Basedonthisrelationship,thevalueofthetensileallowablestress[σ]isoftenusedinengineeringtoestimatethevalueoftheshearallowablestress[τ].
Example1
ThepinconnectionstructureisshowninFigure.TheloadisknowntobeF=15kN.Thethicknessist=8mm,thediameterofthepinisd=20mmandthepinallowableshearstressis[τ]=30MPa.Checktheshearstrengthofthepin.0FFd1.5tttFmmnnFQFQmmnn2F2Fsolution:FromthesectionmethoditiseasytofindSowecangetThereforethepinmeetsthestrengthrequirements.Theshearstressreachestheultimatestressofthematerial,i.e.FBearingpressure:forceactingonthecontactsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfacebearingstress:pressureonthebearingsurfaceFFwhereAjyisthebearingsurfacearea.Thisbearingstressisnotthetruestressandisusuallyreferredtoasthenominalbearingstress.Bearingsurface2、Practicalcalculationofbearing
Thecalculationoftheareaoftheextrudedsurfaceisdiscussedintwocasesasfollows:(1)Whenthecontactsurfaceisflat,theareaoftheextrudedsurfaceforcalculationistheactualcontactsurfacearea,i.e.
lhh2(2)Whenthecontactsurfaceisasemi-cylindricalsurface,theareaofthebearingsurfaceforcalculationisthediameterprojectionareaoftheactualcontactsurface.Inthisway,thenominalbearingstresscalculatedinaccordancewithequationandtheactualmaximumbearingstressareverysimilar.tdShearingsurfaceDiameterprojectionareaActualcontactareaTopreventbearingdamage,themaximumbearingstressshouldnotexceedtheallowablebearingstress[σjy]ofthematerial,i.e.
Thisisthebearingstrengthcondition.Theallowablebearingstressandtheallowabletensilestress[σ]arerelatedasfollows:Plasticmaterials:Brittlematerials:Ifthetwocontactingmembersareofdifferentmaterials,thecalculationshouldbemadeforthememberwiththeweakerbearingstrength.
Therearethreepossibledamagetoconnectionscommonlyusedinengineering:Oneisthatthememberisshearedalongtheshearsurface;Second,Thebearingsurfaceshowsobviousplasticdeformation,whichmakestheconnectingrodloose;Third,theconnectionplatemaybepulledoffbecausethecross-sectionisweakenedafterdrilling.3、Strengthcalculationofconnectionparts
Tomakefulluseofthematerial,theshearandbearingstressesshouldmeet:DiscussionAjointisshowninthefigure.Itisknownthattheplateandrivetareofthesamematerialandthatσbs=2[τ].Tomakefulluseofthematerial,therivetdiameterdshouldbe________Example2
ArivetedjointstructureisshowninFig(a)withaknownloadF=100kN,arivetdiameterd=16mm,anallowabletensilestress[σ]=160MPaforthesteelplate.Theallowableshearstressis[τ]=130MPafortherivetandtheallowablebearingstressis[σjy]=320MPafortheplateandrivet.Checkthestrengthofthestructure.Fd=16mmF=100kN(a)t=10mmt=10mmSolution
Therearethreepossibleformsofdamagetoarivetedjointstructure:damagetotherivetduetoshear;damagetotherivetorsteelplateduetobearing;anddamagetothesteelplateduetotension.(1)ChecktheshearstrengthoftherivetTheforceoneachrivetisTherefore,theshearforceontheshearplaneoftherivetis
Theshearstressintherivetisthus321123F4F4F4p4FFb=90mmFF=100kNt=10mmd=16mmFF1p2p10FF123F3214p4p4p4pb=90Fd=16F=100KNt=10t=10(2)Checkthebearingstrengthoftherivetthebearingforceoftherivet:thebearingstressis2314p34FF1123F3214p4p4p4p+FF=100kN(3)Checkthetensilestrengthofthesteelplate.Sectionmethodsection2-2:section3-3:
Insummary,theentirestructure
meetsthestrengthrequirements.Apairofcoupleswithequalmagnitudeandoppositedirectionisappliedattheendsoftherod.Thecoupleplaneisperpendiculartotheaxisoftherod.Anytwocrosssectionsoftherodrotaterelativetoeachotheraroundtheaxisofthebar.Thisformofdeformationoftherodiscalledtorsionaldeformation.
Accordingtothesectionmethod,whentorsionaldeformationoccurstotherod,theinternalforceonthecrosssectionisonlythemomentofthecouplelocatedontheface.Itiscalledtorque.8.3Theconceptoftorsion1、CalculationoftheexternalmomentofcoupleIfthepowerisexpressedinNk(kW)andtherotationalspeedisn(r/min),themomentisM,wecanget
Note:TheunitofNk
iskW,andtheunitofnisr/min.WhenthepowerishorsepowerNH
(H.P,1horsepower=735.5W),theformulaforcalculatingtheexternalmomentofcoupleis
8.4Torqueandtorquediagram2、TorqueandtorquediagramAssumethatthecircularaxisisdividedintotwosectionsalongthesectionm-m,theequilibriumoftheleftsectionasfollowingSowegetwhereMnisthecombinedmomentofthedistributedinternalforcesystemofthetwopartsIandIIinteractingonthesectionm-m.Similarly,iftherightsectionisthesubjectofstudy,thetorqueMnonsectionm-mcanalsobefound.Itsvalueisstillm,butitssteeringisoppositeMMnnIIIMnnIInnIxMnMnM
Thesignofthetorquecanbespecifiedasfollows:thetorqueMnisexpressedasavectoraccordingtotheright-handspiralrule.Whenthedirectionofthevectoristhesameasthedirectionoftheouternormalofthesection,thetorqueMnispositive,andtheoppositeisnegative.Inthisway,Thetorqueonthecrosssectionm-mispositivebothforpartIandpartII.
AgraphicalrepresentationofthevariationoftorqueMninthedirectionoftheaxisiscalledatorquediagram.Torquediagramsaredrawninasimilarwaytoaxialforcediagrams.
Example3
OntheshaftshowninFigure,theactivewheelAisconnectedtotheprimemoverandthedrivenwheelsB,CandDareconnectedtothemachinetool.TheinputpowerofwheelAisknowntobeNA=50kW,theoutputsofwheelsB,CandDareNB=NC=15kWandND=20kW,respectively.Thespeedoftheshaftisn=300r/min.Trytofindthetorqueineachsectionoftheshaftanddrawatorquediagram.(a)AMBMCMDMBACDIIIIIIIIIIIICSolution(1)Calculatetheexternalmomentofcouple(2)CalculatetorqueSectionBC:cuttheshaftalongsectionI.Fromtheequilibriumequation,wegetBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDMAnegativeresultindicatesthattheactualdirectionofthetorqueIisoppositetothedirectionset.ThetorqueoneachsectionwithinthesectionBCisconstant,sothetorquediagraminthissectionisahorizontalline(Fig.e).SectionCA:ThereforeSectionAD:BMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM+-(3)Makingtorquediagram
Ascanbeseenfromthegraph,themaximumtorqueoccursinthesectionCAwithanabsolutevalueofBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM
8.5Torsionofthin-walledcylinders
Inordertostudythestressanddeformationduringtorsionofacircularshaft,thetorsionofathin-walledcylinderisfirstdiscussedtounderstandthelawofshearstressandshearstrainandtherelationshipbetweenthem.1.Stressinthin-walledcylindersduringtorsionInthefigureabove,athin-walledcylinderofequalthicknessisshown.Afterapplyinganexternalmomentatbothends,thefollowingphenomenacanbeobserved:
(1)Theshape,sizeandspacingofthecircumferentiallinesonthesurfaceofthecylinderremainunchanged,andjustrotaterelativelyaroundtheaxis.(2)Eachlongitudinallineisinclinedatthesameangleγ,andcanstillbeapproximatedasastraightline.
(3)Tinyrectangleformedbythelongitudinalandcircumferentiallinesbecomesaparallelogram.tRjg1Therearenonormalstressesineachcrosssectionofthecylindertwisted,onlytheshearingstressesperpendiculartotheradius.Theshearstressisthesameateverypointalongthecircumferenceofthecross-section.2Theshearstressesareuniformlydistributedalongthewallthicknessdirection.3ItsdirectioncoincideswiththesteeringofthetorqueMninthecrosssection.MnMnabcddxnMjgRRdqItfollowsfromstaticsthatsoor
whereistheareaenclosedbythemidlineofthecylinderwallonthecrosssection.RRdAdqt(e)Letlandbethelengthandtherelativeangleoftwistatbothendsofthethin-walledcylinderrespectively.Wecangetthereforetheshearstrainisproportionaltothetorsionangle.jgcabdgg2.PureshearShearforceEquilibriumconditioncouplemoment
Astheelementisinequilibrium,inthetopandbottomsurfaceoftheelement,theremustalsobeshearstressτ’
yxzdxtt¢dytTheaboveequationshowsthatshearstressmustexistinpairswithequalvaluesonthetwoplanesperpendiculartoeachotherintheelement.Theshearstressesarebothperpendiculartotheintersectionofthetwoplanes.Thedirectionisofpointingtoordeviatingfromthisintersectionconsistently.Thisrelationshipisknownasthetheoremofcomplementaryshearingstresses.Asshowninthefigureonthetop,bottom,leftandrightfoursidesoftheunitbodyonlyshearstressandnopositivestressexist,thestressstateofunitbodyiscalledpureshearstate.yxzdxtt¢dyt3.Hook'sLawinshear
Theτ-γcurveforlowcarbonsteelisshowninabovepictureHook'sLawinshear
WhereGisaconstantofproportionality,knownastheshearmodulusofelasticity.Itisanindicatoroftheabilityofamaterialtoresistsheardeformation.Becauseγisdimensionless,Ghasthesameunitastheτ.TheG-valueofthesteelisabout80GPa.gttg0
"Hooke'slawintensionandcompression","Hooke'slawinshear"and"theoremofcomplementaryshearingstresses"arethefundamentaltheoremsofmaterialmechanics.ThetensilemodulusofelasticityE,theshearmodulusofelasticityGandthePoisson'sratioμarethreeelasticconstantsofamaterial.Forisotropicelasticmaterials,thefollowingrelationshipsexistbetweenthem.
Onlytwoofthethreeelasticconstantsareindependent.4.Energyofsheardeformation
whentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theangleφoftwistisproportionaltotheexternaltorqueM.TheworkdonebytheexternalmomentisEnergyofsheardeformationU,
Strainenergyperunitvolumeisthestrainenergydensityu.ThevalueofushouldbeequaltotheshearstrainenergyUdividedbythevolumeofthethin-walledcylinder.SoAccordingtoHook'sLawinshear,wecanget
8.6Stressanddeformationduringtorsionofcircularshafts Trainofthought:Geometricrelation(planesectionhypothesis)RelationshipbetweenshearstrainandrelativeangleoftwistPhysicalrelation(Hook'sLaw)RelationshipbetweenshearstressandrelativeangleoftwistStaticrelation(Thecombinedmomentofshearstressontheshaft,i.e.thetorqueonthecrosssection)Relativeangleoftwistexpressionandshearstressexpression1.Stressduringtorsionofacircularshaft1.GeometricrelationAmicro-sectionoflengthdxisinterceptedfromthecircularshaftAsmallrelativemisalignmentoftheabsideTheanglechangeγoftheoriginalrectangleonthesurfaceofthecircularshaftisTheshearstraininthecross-sectionatadistanceρfromthecenterofthecircleis(a)jxeMeMmndxmn2.PhysicalrelationWhentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theshearstressisproportionaltotheshearstrain,thatis,obeyingtheshearHooke'slaw
(b)Substituteequation(a)intoequation(b)tofindtheshearstressatthedistanceρfromtheaxisas
(c)Theaboveformulashowsthattheshearstressτρa(bǔ)tanypointinthecrosssectionisproportionaltothedistanceρ.Theshearstressvariesalongtheradiusinalinearfashion,withzeroshearstressatthecentreofthecircleandthemaximumshearstressatpointsonthecircumferentialedge.
Accordingtothetheoremofcomplementaryshearingstresses,thedistributionofshearstressesalongtheradiusinthelongitudinalandtransversesectionsofthesolidcircularshaftisshownasfollows.rt3.Staticrelation
TakeamicroareadA,micro-shearforcesonthemicro-areadA:Correspondingmicro-momentstothecenterofthecircle:torque
(d)Substituteintoaboveequation,weget
dArtdAnMrOTheintegralintheaboveequationisaquantityrelatedtothegeometryanddimensionsofthecrosssection.Itiscalledthepolarmomentofinertiaofthecrosssection.(denotedas)
rtdAdAnMrOequation(d)canagainbewrittenasconsidering
weget
Thisistheformulaforcalculatingtheshearstressatanypointonthecrosssectionwhenthecircularshaftistwisted.
Accordingtoequation
Wecanknow,whenρ=R(i.e.ateachpointontheedgeofthecrosssection),theshearstresstakesitsmaximumvalue.
let,aboveequationcancanbewrittenas
WhereWniscalledthesectionmodulusoftorsion.4.TorsionaldeformationofcircularshaftThetorsionaldeformationofacircularshaftcanbeexpressedintermsoftherelativeangleoftwistoftwocrosssections.
Integratingbothsidesoftheaboveequationgivestherelativeangleoftwistofthetwosectionsseparatedbyl.
Foracircularshaftofequalcross-sectionmadeofthesamematerial(ItsGIPisaconstant),Ifthetorquebetweenthetwocrosssections(distancel)isalsoconstant,thetorsionanglebetweenthetwosections
is
Thisistheformulaforcalculatingthetorsionaldeformationofacircularshaftofequalcrosssection.
isknownasthetorsionalrigidity.
ThesignoftheangleoftwistisspecifiedinthesamewayasthatoftorqueMnanditsunitisradian(rad).
Ifthetorqueortorsionalrigiditybetweentwocrosssectionsisvariable,therelativetorsionalanglesofthetwosectionsshouldbecalculatedbyintegratingthetorsionalanglesofeachsectioninaccordancewithequationandthensummingthemalgebraically.5.Polarmomentsofinertiaandsectionmodulusoftorsion
annularmicroarea:polarmomentofinertiaofcircularsection:
drRDmaxtmaxtmaxtsectionmodulusoftorsion:
whereDisthediameterofthecircularsection.ThedimensionofIpisthefourthpowerofthelengthandthedimensionofWnisthethirdpowerofthelength.rOdrRDmaxtmaxtmaxtforthehollowcircularshaft,
WhereDanddaretheouterandinnerdiametersofthehollowcircularsection,respectively.rOdrRDmaxtmaxtmaxt6、ApplicationconditionsofstressanddeformationformuladuringtorsionTheabovestressanddeformationequationsarederivedbasedontherigidplanehypothesis.Theseformulasareonlyapplicabletoisotropiccircularbars.Whenthecircularcrosssectionchangesslowlyalongtheaxis,itcanalsobeapproximatedbytheaboveformulae.IpandWnarealsochangingalongtheaxisatthesametime.
Onlywhen,aboveequationsarecorrect.8.7Torsion
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流配送司機(jī)薪酬方案
- 光學(xué)儀器工廠租賃合同樣本
- 電力公司用戶數(shù)據(jù)保密制度
- 城市綠化養(yǎng)護(hù)招投標(biāo)合同審查
- 水利教師聘用合同模板
- 環(huán)保工程庫房施工合同
- 油氣管道施工員勞動(dòng)合同樣本
- 購(gòu)物中心設(shè)施安裝物業(yè)合同
- 醫(yī)療衛(wèi)生評(píng)審員管理辦法
- 2025版教育機(jī)構(gòu)安全責(zé)任保險(xiǎn)合同2篇
- 2024屆甘肅省平?jīng)鍪徐o寧縣英語九年級(jí)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 滄源永弄華能100MW茶光互補(bǔ)光伏發(fā)電項(xiàng)目環(huán)評(píng)報(bào)告
- 倉(cāng)儲(chǔ)業(yè)行業(yè)SWOT分析
- 輔導(dǎo)員工作匯報(bào)課件
- 公司金融學(xué)張德昌課后參考答案
- 商務(wù)英語口語與實(shí)訓(xùn)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- DB3302-T 1015-2022 城市道路清掃保潔作業(yè)規(guī)范
- 手術(shù)室提高患者術(shù)中保溫措施的執(zhí)行率PDCA課件
- 報(bào)刊雜志發(fā)放登記表
- 大學(xué)物理(下)(太原理工大學(xué))知到章節(jié)答案智慧樹2023年
- 布袋除塵器項(xiàng)目可行性分析報(bào)告
評(píng)論
0/150
提交評(píng)論