




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
StaticsStaticsofdeformablebodyChapter8
ShearandTorsionContents8.1Theconceptofshear8.2Practicalcalculationofshearand
bearing8.3Theconceptoftorsion8.4Torqueandtorquediagram8.5Torsionofthin-walledcylinders8.6Stressanddeformationduringtorsionofcircularshafts 8.7Torsionalstrengthandrigidity SmallshearingmachineBoltedconnectionRivetedconnectionPinconnectionFlatkeyconnection8.1TheconceptofshearFFmn0FFFsinglesheardoubleshearBearingbearingstress
:pressureonthebearingsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfaceFFBearingsurface8.2Practicalcalculationofshearandbearing1、Practicalcalculationofshear
FFQtTheshearstressτisuniformlydistributedontheshearsurface.SotheformulaofshearstressiswhereAistheareaoftheshearsurface.Thisshearstressisbasedonassumptionsandisnotthetrueshearstress,whichisusuallyreferredtothenominalshearstress.Whentheshearstressτontheshearplanereachesacertainvalue,theshearmemberwillbedamagedbyshear.Allowableshearstress
Thisistheshearstrengthcondition.Iftheshearultimatestressofthematerialisandnisthesafetyfactorthentheallowableshearstressofthematerial
isExperimentalresultsshowthattheshearultimatestrengthofthematerialhasanapproximateproportionalrelationshipwiththetensile(compressive)ultimatestrength.Plasticmaterials:Brittlematerials:Basedonthisrelationship,thevalueofthetensileallowablestress[σ]isoftenusedinengineeringtoestimatethevalueoftheshearallowablestress[τ].
Example1
ThepinconnectionstructureisshowninFigure.TheloadisknowntobeF=15kN.Thethicknessist=8mm,thediameterofthepinisd=20mmandthepinallowableshearstressis[τ]=30MPa.Checktheshearstrengthofthepin.0FFd1.5tttFmmnnFQFQmmnn2F2Fsolution:FromthesectionmethoditiseasytofindSowecangetThereforethepinmeetsthestrengthrequirements.Theshearstressreachestheultimatestressofthematerial,i.e.FBearingpressure:forceactingonthecontactsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfacebearingstress:pressureonthebearingsurfaceFFwhereAjyisthebearingsurfacearea.Thisbearingstressisnotthetruestressandisusuallyreferredtoasthenominalbearingstress.Bearingsurface2、Practicalcalculationofbearing
Thecalculationoftheareaoftheextrudedsurfaceisdiscussedintwocasesasfollows:(1)Whenthecontactsurfaceisflat,theareaoftheextrudedsurfaceforcalculationistheactualcontactsurfacearea,i.e.
lhh2(2)Whenthecontactsurfaceisasemi-cylindricalsurface,theareaofthebearingsurfaceforcalculationisthediameterprojectionareaoftheactualcontactsurface.Inthisway,thenominalbearingstresscalculatedinaccordancewithequationandtheactualmaximumbearingstressareverysimilar.tdShearingsurfaceDiameterprojectionareaActualcontactareaTopreventbearingdamage,themaximumbearingstressshouldnotexceedtheallowablebearingstress[σjy]ofthematerial,i.e.
Thisisthebearingstrengthcondition.Theallowablebearingstressandtheallowabletensilestress[σ]arerelatedasfollows:Plasticmaterials:Brittlematerials:Ifthetwocontactingmembersareofdifferentmaterials,thecalculationshouldbemadeforthememberwiththeweakerbearingstrength.
Therearethreepossibledamagetoconnectionscommonlyusedinengineering:Oneisthatthememberisshearedalongtheshearsurface;Second,Thebearingsurfaceshowsobviousplasticdeformation,whichmakestheconnectingrodloose;Third,theconnectionplatemaybepulledoffbecausethecross-sectionisweakenedafterdrilling.3、Strengthcalculationofconnectionparts
Tomakefulluseofthematerial,theshearandbearingstressesshouldmeet:DiscussionAjointisshowninthefigure.Itisknownthattheplateandrivetareofthesamematerialandthatσbs=2[τ].Tomakefulluseofthematerial,therivetdiameterdshouldbe________Example2
ArivetedjointstructureisshowninFig(a)withaknownloadF=100kN,arivetdiameterd=16mm,anallowabletensilestress[σ]=160MPaforthesteelplate.Theallowableshearstressis[τ]=130MPafortherivetandtheallowablebearingstressis[σjy]=320MPafortheplateandrivet.Checkthestrengthofthestructure.Fd=16mmF=100kN(a)t=10mmt=10mmSolution
Therearethreepossibleformsofdamagetoarivetedjointstructure:damagetotherivetduetoshear;damagetotherivetorsteelplateduetobearing;anddamagetothesteelplateduetotension.(1)ChecktheshearstrengthoftherivetTheforceoneachrivetisTherefore,theshearforceontheshearplaneoftherivetis
Theshearstressintherivetisthus321123F4F4F4p4FFb=90mmFF=100kNt=10mmd=16mmFF1p2p10FF123F3214p4p4p4pb=90Fd=16F=100KNt=10t=10(2)Checkthebearingstrengthoftherivetthebearingforceoftherivet:thebearingstressis2314p34FF1123F3214p4p4p4p+FF=100kN(3)Checkthetensilestrengthofthesteelplate.Sectionmethodsection2-2:section3-3:
Insummary,theentirestructure
meetsthestrengthrequirements.Apairofcoupleswithequalmagnitudeandoppositedirectionisappliedattheendsoftherod.Thecoupleplaneisperpendiculartotheaxisoftherod.Anytwocrosssectionsoftherodrotaterelativetoeachotheraroundtheaxisofthebar.Thisformofdeformationoftherodiscalledtorsionaldeformation.
Accordingtothesectionmethod,whentorsionaldeformationoccurstotherod,theinternalforceonthecrosssectionisonlythemomentofthecouplelocatedontheface.Itiscalledtorque.8.3Theconceptoftorsion1、CalculationoftheexternalmomentofcoupleIfthepowerisexpressedinNk(kW)andtherotationalspeedisn(r/min),themomentisM,wecanget
Note:TheunitofNk
iskW,andtheunitofnisr/min.WhenthepowerishorsepowerNH
(H.P,1horsepower=735.5W),theformulaforcalculatingtheexternalmomentofcoupleis
8.4Torqueandtorquediagram2、TorqueandtorquediagramAssumethatthecircularaxisisdividedintotwosectionsalongthesectionm-m,theequilibriumoftheleftsectionasfollowingSowegetwhereMnisthecombinedmomentofthedistributedinternalforcesystemofthetwopartsIandIIinteractingonthesectionm-m.Similarly,iftherightsectionisthesubjectofstudy,thetorqueMnonsectionm-mcanalsobefound.Itsvalueisstillm,butitssteeringisoppositeMMnnIIIMnnIInnIxMnMnM
Thesignofthetorquecanbespecifiedasfollows:thetorqueMnisexpressedasavectoraccordingtotheright-handspiralrule.Whenthedirectionofthevectoristhesameasthedirectionoftheouternormalofthesection,thetorqueMnispositive,andtheoppositeisnegative.Inthisway,Thetorqueonthecrosssectionm-mispositivebothforpartIandpartII.
AgraphicalrepresentationofthevariationoftorqueMninthedirectionoftheaxisiscalledatorquediagram.Torquediagramsaredrawninasimilarwaytoaxialforcediagrams.
Example3
OntheshaftshowninFigure,theactivewheelAisconnectedtotheprimemoverandthedrivenwheelsB,CandDareconnectedtothemachinetool.TheinputpowerofwheelAisknowntobeNA=50kW,theoutputsofwheelsB,CandDareNB=NC=15kWandND=20kW,respectively.Thespeedoftheshaftisn=300r/min.Trytofindthetorqueineachsectionoftheshaftanddrawatorquediagram.(a)AMBMCMDMBACDIIIIIIIIIIIICSolution(1)Calculatetheexternalmomentofcouple(2)CalculatetorqueSectionBC:cuttheshaftalongsectionI.Fromtheequilibriumequation,wegetBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDMAnegativeresultindicatesthattheactualdirectionofthetorqueIisoppositetothedirectionset.ThetorqueoneachsectionwithinthesectionBCisconstant,sothetorquediagraminthissectionisahorizontalline(Fig.e).SectionCA:ThereforeSectionAD:BMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM+-(3)Makingtorquediagram
Ascanbeseenfromthegraph,themaximumtorqueoccursinthesectionCAwithanabsolutevalueofBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM
8.5Torsionofthin-walledcylinders
Inordertostudythestressanddeformationduringtorsionofacircularshaft,thetorsionofathin-walledcylinderisfirstdiscussedtounderstandthelawofshearstressandshearstrainandtherelationshipbetweenthem.1.Stressinthin-walledcylindersduringtorsionInthefigureabove,athin-walledcylinderofequalthicknessisshown.Afterapplyinganexternalmomentatbothends,thefollowingphenomenacanbeobserved:
(1)Theshape,sizeandspacingofthecircumferentiallinesonthesurfaceofthecylinderremainunchanged,andjustrotaterelativelyaroundtheaxis.(2)Eachlongitudinallineisinclinedatthesameangleγ,andcanstillbeapproximatedasastraightline.
(3)Tinyrectangleformedbythelongitudinalandcircumferentiallinesbecomesaparallelogram.tRjg1Therearenonormalstressesineachcrosssectionofthecylindertwisted,onlytheshearingstressesperpendiculartotheradius.Theshearstressisthesameateverypointalongthecircumferenceofthecross-section.2Theshearstressesareuniformlydistributedalongthewallthicknessdirection.3ItsdirectioncoincideswiththesteeringofthetorqueMninthecrosssection.MnMnabcddxnMjgRRdqItfollowsfromstaticsthatsoor
whereistheareaenclosedbythemidlineofthecylinderwallonthecrosssection.RRdAdqt(e)Letlandbethelengthandtherelativeangleoftwistatbothendsofthethin-walledcylinderrespectively.Wecangetthereforetheshearstrainisproportionaltothetorsionangle.jgcabdgg2.PureshearShearforceEquilibriumconditioncouplemoment
Astheelementisinequilibrium,inthetopandbottomsurfaceoftheelement,theremustalsobeshearstressτ’
yxzdxtt¢dytTheaboveequationshowsthatshearstressmustexistinpairswithequalvaluesonthetwoplanesperpendiculartoeachotherintheelement.Theshearstressesarebothperpendiculartotheintersectionofthetwoplanes.Thedirectionisofpointingtoordeviatingfromthisintersectionconsistently.Thisrelationshipisknownasthetheoremofcomplementaryshearingstresses.Asshowninthefigureonthetop,bottom,leftandrightfoursidesoftheunitbodyonlyshearstressandnopositivestressexist,thestressstateofunitbodyiscalledpureshearstate.yxzdxtt¢dyt3.Hook'sLawinshear
Theτ-γcurveforlowcarbonsteelisshowninabovepictureHook'sLawinshear
WhereGisaconstantofproportionality,knownastheshearmodulusofelasticity.Itisanindicatoroftheabilityofamaterialtoresistsheardeformation.Becauseγisdimensionless,Ghasthesameunitastheτ.TheG-valueofthesteelisabout80GPa.gttg0
"Hooke'slawintensionandcompression","Hooke'slawinshear"and"theoremofcomplementaryshearingstresses"arethefundamentaltheoremsofmaterialmechanics.ThetensilemodulusofelasticityE,theshearmodulusofelasticityGandthePoisson'sratioμarethreeelasticconstantsofamaterial.Forisotropicelasticmaterials,thefollowingrelationshipsexistbetweenthem.
Onlytwoofthethreeelasticconstantsareindependent.4.Energyofsheardeformation
whentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theangleφoftwistisproportionaltotheexternaltorqueM.TheworkdonebytheexternalmomentisEnergyofsheardeformationU,
Strainenergyperunitvolumeisthestrainenergydensityu.ThevalueofushouldbeequaltotheshearstrainenergyUdividedbythevolumeofthethin-walledcylinder.SoAccordingtoHook'sLawinshear,wecanget
8.6Stressanddeformationduringtorsionofcircularshafts Trainofthought:Geometricrelation(planesectionhypothesis)RelationshipbetweenshearstrainandrelativeangleoftwistPhysicalrelation(Hook'sLaw)RelationshipbetweenshearstressandrelativeangleoftwistStaticrelation(Thecombinedmomentofshearstressontheshaft,i.e.thetorqueonthecrosssection)Relativeangleoftwistexpressionandshearstressexpression1.Stressduringtorsionofacircularshaft1.GeometricrelationAmicro-sectionoflengthdxisinterceptedfromthecircularshaftAsmallrelativemisalignmentoftheabsideTheanglechangeγoftheoriginalrectangleonthesurfaceofthecircularshaftisTheshearstraininthecross-sectionatadistanceρfromthecenterofthecircleis(a)jxeMeMmndxmn2.PhysicalrelationWhentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theshearstressisproportionaltotheshearstrain,thatis,obeyingtheshearHooke'slaw
(b)Substituteequation(a)intoequation(b)tofindtheshearstressatthedistanceρfromtheaxisas
(c)Theaboveformulashowsthattheshearstressτρatanypointinthecrosssectionisproportionaltothedistanceρ.Theshearstressvariesalongtheradiusinalinearfashion,withzeroshearstressatthecentreofthecircleandthemaximumshearstressatpointsonthecircumferentialedge.
Accordingtothetheoremofcomplementaryshearingstresses,thedistributionofshearstressesalongtheradiusinthelongitudinalandtransversesectionsofthesolidcircularshaftisshownasfollows.rt3.Staticrelation
TakeamicroareadA,micro-shearforcesonthemicro-areadA:Correspondingmicro-momentstothecenterofthecircle:torque
(d)Substituteintoaboveequation,weget
dArtdAnMrOTheintegralintheaboveequationisaquantityrelatedtothegeometryanddimensionsofthecrosssection.Itiscalledthepolarmomentofinertiaofthecrosssection.(denotedas)
rtdAdAnMrOequation(d)canagainbewrittenasconsidering
weget
Thisistheformulaforcalculatingtheshearstressatanypointonthecrosssectionwhenthecircularshaftistwisted.
Accordingtoequation
Wecanknow,whenρ=R(i.e.ateachpointontheedgeofthecrosssection),theshearstresstakesitsmaximumvalue.
let,aboveequationcancanbewrittenas
WhereWniscalledthesectionmodulusoftorsion.4.TorsionaldeformationofcircularshaftThetorsionaldeformationofacircularshaftcanbeexpressedintermsoftherelativeangleoftwistoftwocrosssections.
Integratingbothsidesoftheaboveequationgivestherelativeangleoftwistofthetwosectionsseparatedbyl.
Foracircularshaftofequalcross-sectionmadeofthesamematerial(ItsGIPisaconstant),Ifthetorquebetweenthetwocrosssections(distancel)isalsoconstant,thetorsionanglebetweenthetwosections
is
Thisistheformulaforcalculatingthetorsionaldeformationofacircularshaftofequalcrosssection.
isknownasthetorsionalrigidity.
ThesignoftheangleoftwistisspecifiedinthesamewayasthatoftorqueMnanditsunitisradian(rad).
Ifthetorqueortorsionalrigiditybetweentwocrosssectionsisvariable,therelativetorsionalanglesofthetwosectionsshouldbecalculatedbyintegratingthetorsionalanglesofeachsectioninaccordancewithequationandthensummingthemalgebraically.5.Polarmomentsofinertiaandsectionmodulusoftorsion
annularmicroarea:polarmomentofinertiaofcircularsection:
drRDmaxtmaxtmaxtsectionmodulusoftorsion:
whereDisthediameterofthecircularsection.ThedimensionofIpisthefourthpowerofthelengthandthedimensionofWnisthethirdpowerofthelength.rOdrRDmaxtmaxtmaxtforthehollowcircularshaft,
WhereDanddaretheouterandinnerdiametersofthehollowcircularsection,respectively.rOdrRDmaxtmaxtmaxt6、ApplicationconditionsofstressanddeformationformuladuringtorsionTheabovestressanddeformationequationsarederivedbasedontherigidplanehypothesis.Theseformulasareonlyapplicabletoisotropiccircularbars.Whenthecircularcrosssectionchangesslowlyalongtheaxis,itcanalsobeapproximatedbytheaboveformulae.IpandWnarealsochangingalongtheaxisatthesametime.
Onlywhen,aboveequationsarecorrect.8.7Torsion
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遂寧市重點中學2024-2025學年高三沖刺模擬物理試題含解析
- 常熟中學2025年高三下學期模擬試題(二)物理試題含解析
- 廣安職業(yè)技術學院《人文社科英語聽說(下)》2023-2024學年第一學期期末試卷
- 廣東省佛山市南海區(qū)重點中學2025年初三沖刺診斷考試化學試題試卷含解析
- 鎮(zhèn)江市科技金融服務平臺建設方案
- 2025年裝修終止合同模板
- 市政劃線施工方案
- 2025年合同權利義務轉讓協(xié)議
- 公共事業(yè)管理心理評估試題及答案
- 合同法分包的法律依據
- 二零二五年度汽車銷售業(yè)務員勞動合同(新車與二手車)
- 護理人員中醫(yī)技術使用手冊(2024版)
- 設備設施風險分級管控清單
- 河北養(yǎng)老托育項目可行性研究報告
- 急診醫(yī)學題庫含參考答案
- 《帶電作業(yè)操作規(guī)范-架空配電線路機械化帶電立撤桿》征求意見稿
- T-CAS 886-2024 輸血相容性檢測設備檢測性能驗證技術規(guī)范
- 公司安全生產事故隱患內部報告獎勵工作制度
- 用戶體驗測試方法培訓
- 壓力性損傷安全警示教育
- 眼科診所安全消毒規(guī)程
評論
0/150
提交評論