![高一數(shù)學(xué)必考點(diǎn)分類集訓(xùn)(人教A版必修第一冊)專題5.1任意角與弧度制(4類必考點(diǎn))(原卷版+解析)_第1頁](http://file4.renrendoc.com/view3/M01/2F/3F/wKhkFmaILAeAZa8kAAHLzLKdIdQ656.jpg)
![高一數(shù)學(xué)必考點(diǎn)分類集訓(xùn)(人教A版必修第一冊)專題5.1任意角與弧度制(4類必考點(diǎn))(原卷版+解析)_第2頁](http://file4.renrendoc.com/view3/M01/2F/3F/wKhkFmaILAeAZa8kAAHLzLKdIdQ6562.jpg)
![高一數(shù)學(xué)必考點(diǎn)分類集訓(xùn)(人教A版必修第一冊)專題5.1任意角與弧度制(4類必考點(diǎn))(原卷版+解析)_第3頁](http://file4.renrendoc.com/view3/M01/2F/3F/wKhkFmaILAeAZa8kAAHLzLKdIdQ6563.jpg)
![高一數(shù)學(xué)必考點(diǎn)分類集訓(xùn)(人教A版必修第一冊)專題5.1任意角與弧度制(4類必考點(diǎn))(原卷版+解析)_第4頁](http://file4.renrendoc.com/view3/M01/2F/3F/wKhkFmaILAeAZa8kAAHLzLKdIdQ6564.jpg)
![高一數(shù)學(xué)必考點(diǎn)分類集訓(xùn)(人教A版必修第一冊)專題5.1任意角與弧度制(4類必考點(diǎn))(原卷版+解析)_第5頁](http://file4.renrendoc.com/view3/M01/2F/3F/wKhkFmaILAeAZa8kAAHLzLKdIdQ6565.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題5.1任意角與弧度制TOC\o"1-3"\h\z\t"正文,1"【考點(diǎn)1:任意角的概念與終邊相同角】 1【考點(diǎn)2:象限角】 2【考點(diǎn)3:弧度制】 3【考點(diǎn)4:弧長公式與扇形的面積公式】 5【考點(diǎn)1:任意角的概念與終邊相同角】【知識點(diǎn):任意角的概念與終邊相同角】1.角的分類角的分類eq\b\lc\{\rc\(\a\vs4\al\co1(\a\vs4\al(按旋轉(zhuǎn)方向,不同分類)\b\lc\{\rc\(\a\vs4\al\co1(正角:按逆時針方向旋轉(zhuǎn)形成的角,負(fù)角:按順時針方向旋轉(zhuǎn)形成的角,零角:射線沒有旋轉(zhuǎn))),\a\vs4\al(按終邊位置,不同分類)\b\lc\{\rc\(\a\vs4\al\co1(象限角:角的終邊在第幾象限,這,個角就是第幾象限角,軸線角:角的終邊落在坐標(biāo)軸上))))2.終邊相同的角所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個集合:S={β|β=α+k·360°,k∈Z}或{β|β=α+2kπ,k∈Z}.1.(2022·全國·高三專題練習(xí))將分針撥慢5分鐘,則分針轉(zhuǎn)過的角是(
)A.60° B.?60° C.30° D.?30°2.(2022·全國·高三專題練習(xí))喜洋洋從家步行到學(xué)校,一般需要10分鐘,則10分鐘時間鐘表的分針走過的角度是()A.30° B.﹣30° C.60° D.﹣60°3.(2022·江蘇·南京市第十三中學(xué)高一階段練習(xí))與﹣460°A.k?360°+260°,k∈Z B.k?360°+100°,k∈ZC.k?360°+460°,k∈Z D.k?360°?260°,k∈Z4.(2022·浙江大學(xué)附屬中學(xué)高一期末)下列選項(xiàng)中與角α=?30°終邊相同的角是(A.30° B.240° C.390°5.(2022·江西省萬載中學(xué)高一階段練習(xí))已知角α=k?180°?2002°,k∈Z,則符合條件的最大負(fù)角為(
A.–22o B.–220o C.–202o D.–158o6.(2022·全國·高三專題練習(xí))將?885°化為α+k?360A.?165°+C.195°+?27.(2022·山東東營·高一期中)與2022°終邊相同的角是(
A.?138° B.?72° C.8.(2022·全國·高一課時練習(xí))將一條射線繞著其端點(diǎn)順時針旋轉(zhuǎn)198°,再逆時針旋轉(zhuǎn)809.(2022·上海市七寶中學(xué)附屬鑫都實(shí)驗(yàn)中學(xué)高一期末)與2023°10.(2022·黑龍江·齊齊哈爾三立高級中學(xué)有限公司高三階段練習(xí))在0°到360°范圍內(nèi),與405【考點(diǎn)2:象限角】【知識點(diǎn):象限角】[方法技巧]確定eq\f(α,n)(n≥2,n∈N*)終邊位置的方法步驟討論法(1)用終邊相同角的形式表示出角α的范圍;(2)寫出eq\f(α,n)的范圍;(3)根據(jù)k的可能取值討論確定eq\f(α,n)的終邊所在位置等分象限角法已知角α是第m(m=1,2,3,4)象限角,求eq\f(α,n)是第幾象限角.(1)等分:將每個象限分成n等份;(2)標(biāo)注:從x軸正半軸開始,按照逆時針方向順次循環(huán)標(biāo)上1,2,3,4,直至回到x軸正半軸;(3)選答:出現(xiàn)數(shù)字m的區(qū)域,即為eq\f(α,n)的終邊所在的象限1.(2022·江西·修水中等專業(yè)學(xué)校高三階段練習(xí))第二象限的角都是鈍角._____2.(2022·遼寧·東北育才學(xué)校高一期中)2022°是第(
)象限角.A.一 B.二 C.三 D.四3.(2022·安徽·高三階段練習(xí))設(shè)角θ是第一象限角,且滿足cosθ2=-cosθ2A.第一象限 B.第二象限C.第三象限 D.第四象限4.(2022·江西省萬載中學(xué)高一階段練習(xí))下列說法中,正確的是(
)A.第二象限的角是鈍角 B.第二象限的角必大于第一象限的角C.?150°是第二象限的角 D.?252°165.(2022·全國·高一課時練習(xí))已知角α的終邊與5π3的終邊重合,則α3的終邊不可能在(A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(2022·江西上饒·高一階段練習(xí))若α是第二象限角,則(
)A.π?α是第一象限角 B.α2C.3π2+α是第二象限角 D.7.(2022·全國·高一課時練習(xí))若α是第二象限角,則180°-α是第______象限角.8.(2022·全國·高一課時練習(xí))若α=k?360°+24°,k∈Z【考點(diǎn)3:弧度制】【知識點(diǎn):弧度制】1.弧度制的定義把長度等于半徑長的弧所對的圓心角叫做1弧度的角,弧度記作rad.2.角度制與弧度制的轉(zhuǎn)化:①1°=eq\f(π,180)rad;②1rad=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180,π)))°1.(2022·全國·高一課時練習(xí))將時鐘撥快10分鐘,則分針轉(zhuǎn)過的弧度是(
)A.π3 B.?π3 C.π2.(2022·江西上饒·高一階段練習(xí))如圖所示的時鐘顯示的時刻為4:30,此時時針與分針的夾角為α(0<α≤π).則α=(
)A.π2 B.π4 C.π83.(2022·陜西·渭南高級中學(xué)高一階段練習(xí))若角α=3rad,則角α是(
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角4.(2022·全國·高一專題練習(xí))已知集合M=xx=kπ4A.N?M B.M?NC.M=N D.M∩N=?5.(2022·江西·修水中等專業(yè)學(xué)校高三階段練習(xí))設(shè)r為圓的半徑,弧長為πr的圓弧所對的圓心角為(
)A.90° B.180° C.270° D.360°6.(2022·安徽省舒城中學(xué)高一開學(xué)考試)315°角的弧度數(shù)為(
)A.3π4 B.7π4 C.?π7.(2022·遼寧實(shí)驗(yàn)中學(xué)高二開學(xué)考試)下面關(guān)于弧度的說法,錯誤的是(
)A.弧長與半徑的比值是圓心角的弧度數(shù)B.一個角的角度數(shù)為n,弧度數(shù)為α,則n180C.長度等于半徑的3倍的弦所對的圓心角的弧度數(shù)為2πD.航海羅盤半徑為10cm,將圓周32等分,每一份的弧長為5π8.(2022·全國·高一課時練習(xí))判斷正誤.(1)“度”與“弧度”是度量角的兩種不同的度量單位.()(2)用角度制和弧度制度量角,都與圓的半徑有關(guān).()(3)1°的角是周角的1360,1rad的角是周角的(4)1rad的角比1°9.(2022·黑龍江·哈爾濱三中高三階段練習(xí))下列說法不正確的是(
)A.三角形的內(nèi)角是第一象限角或第二象限角B.cosC.1弧度的角就是長為半徑的弦所對的圓心角D.若sinα=sinβ,則α10.(2021·江蘇省太湖高級中學(xué)高一階段練習(xí))下列結(jié)論中正確的是(
)A.終邊經(jīng)過點(diǎn)m,mm>0的角的集合是αB.將表的分針撥慢10分鐘,則分針轉(zhuǎn)過的角的弧度數(shù)是π3C.若α是第三象限角,則α2是第二象限角,2αD.M=xx=45°+k?90°,k∈Z,11.(2021·上海市光明中學(xué)高一期中)將角度換算成弧度:100°=____________rad.12.(2022·全國·高一課時練習(xí))若兩個角的差為1弧度,和為1°,則這兩個角的弧度數(shù)分別為______.13.(2022·全國·高一課時練習(xí))把弧度化成角度:(1)3π10【考點(diǎn)4:弧長公式與扇形的面積公式】【知識點(diǎn):弧長公式與扇形的面積公式】角α的弧度數(shù)公式|α|=eq\f(l,r)(弧長用l表示)弧長公式弧長l=|α|r扇形面積公式S=eq\f(1,2)lr=eq\f(1,2)|α|r21.(2023·廣東·高三學(xué)業(yè)考試)一個扇形的弧長與面積的數(shù)值都是3,則該扇形圓心角的弧度數(shù)為()A.12 B.23 C.32.(2021·天津·高一期末)已知扇形AOB的面積為8,且圓心角弧度數(shù)為2,則扇形AOB的周長為(
)A.32 B.24 C.62 D.3.(2022·上海市向明中學(xué)高一期末)已知扇形的周長為6cm,半徑為2cm,則該扇形的面積是___________4.(2022·上海市嘉定區(qū)第一中學(xué)高二期中)已知扇形的中心角為2弧度,扇形的半徑為3,則此扇形的弧長為___________.5.(2022·上海市延安中學(xué)高三期中)已知扇形的圓心角為π3,其弧長為π,則此扇形的面積為_________.(結(jié)果保留π6.(2022·江西贛州·高三期中(文))古代文人墨客與丹青手都善于在紙扇上題字題畫,題字題畫的部分多為扇環(huán).已知某扇形的扇環(huán)如圖所示,其中外弧線的長為60cm,內(nèi)弧線的長為20cm,連接外弧與內(nèi)弧的兩端的線段均為18cm,則該扇形的中心角的弧度數(shù)為____________.7.(2022·安徽·六安一中高三階段練習(xí))已知扇形的周長為20cm,則當(dāng)扇形的圓心角α=________扇形面積最大.8.(2021·上海市光明中學(xué)高一期中)若扇形周長是一定值C(C>0),當(dāng)α為多少弧度時,該扇形面積有最大值?并求出這個最大值.9.(2022·上海外國語大學(xué)附屬大境中學(xué)高二期中)有一個圓錐形漏斗,其底面直徑是10cm,母線長為20cm,在漏斗口的點(diǎn)P處用一根繩子將漏斗掛在墻面上,當(dāng)繩子的長度最短時,可以緊緊地箍住漏斗,不會上下滑動,求此時繩子的長度.10.(2022·全國·高三專題練習(xí))已知扇形的圓心角是α,半徑是r,弧長為l.(1)若α=100°,r=2,求扇形的面積;(2)若扇形的周長為20,求扇形面積的最大值,并求此時扇形圓心角的弧度數(shù).專題5.1任意角與弧度制TOC\o"1-3"\h\z\t"正文,1"【考點(diǎn)1:任意角的概念與終邊相同角】 1【考點(diǎn)2:象限角】 4【考點(diǎn)3:弧度制】 7【考點(diǎn)4:弧長公式與扇形的面積公式】 12【考點(diǎn)1:任意角的概念與終邊相同角】【知識點(diǎn):任意角的概念與終邊相同角】1.角的分類角的分類eq\b\lc\{\rc\(\a\vs4\al\co1(\a\vs4\al(按旋轉(zhuǎn)方向,不同分類)\b\lc\{\rc\(\a\vs4\al\co1(正角:按逆時針方向旋轉(zhuǎn)形成的角,負(fù)角:按順時針方向旋轉(zhuǎn)形成的角,零角:射線沒有旋轉(zhuǎn))),\a\vs4\al(按終邊位置,不同分類)\b\lc\{\rc\(\a\vs4\al\co1(象限角:角的終邊在第幾象限,這,個角就是第幾象限角,軸線角:角的終邊落在坐標(biāo)軸上))))2.終邊相同的角所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個集合:S={β|β=α+k·360°,k∈Z}或{β|β=α+2kπ,k∈Z}.1.(2022·全國·高三專題練習(xí))將分針撥慢5分鐘,則分針轉(zhuǎn)過的角是(
)A.60° B.?60° C.30° D.?30°【答案】C【分析】根據(jù)任意角的概念計算可得.【詳解】解:將分針撥慢是逆時針旋轉(zhuǎn),所以分針撥慢5分鐘,轉(zhuǎn)過的角為560故選:C2.(2022·全國·高三專題練習(xí))喜洋洋從家步行到學(xué)校,一般需要10分鐘,則10分鐘時間鐘表的分針走過的角度是()A.30° B.﹣30° C.60° D.﹣60°【答案】D【分析】根據(jù)分針旋轉(zhuǎn)方向結(jié)合任意角的定義即可求出【詳解】因?yàn)榉轴槥轫槙r針旋轉(zhuǎn),所以10分鐘時間鐘表的分針走過的角度是?360°故選:D.3.(2022·江蘇·南京市第十三中學(xué)高一階段練習(xí))與﹣460°A.k?360°+260°,k∈Z B.k?360°+100°,k∈ZC.k?360°+460°,k∈Z D.k?360°?260°,k∈Z【答案】A【分析】先求出相近的終邊相同的角,即可判斷.【詳解】與﹣460°角終邊相同的角為?100°,??260°,??620°故選:A4.(2022·浙江大學(xué)附屬中學(xué)高一期末)下列選項(xiàng)中與角α=?30°終邊相同的角是(A.30° B.240° C.390°【答案】D【分析】寫出與角α=?30°終邊相同的角的集合,取【詳解】解:與角α=?30°終邊相同的角的集合為取k=1時,β=?30故選:D5.(2022·江西省萬載中學(xué)高一階段練習(xí))已知角α=k?180°?2002°,k∈Z,則符合條件的最大負(fù)角為(
A.–22o B.–220o C.–202o D.–158o【答案】A【分析】由α=k?180°?2002°<0,求出k的范圍,即可求解【詳解】因?yàn)棣?k?180°?2002°<0,所以k<11+11又k∈Z所以當(dāng)k=11時,最大負(fù)角為?22°,故選:A6.(2022·全國·高三專題練習(xí))將?885°化為α+k?360A.?165°+C.195°+?2【答案】B【分析】直接由終邊相同的角的概念求解即可.【詳解】由α∈0°,故選:B.7.(2022·山東東營·高一期中)與2022°終邊相同的角是(
A.?138° B.?72° C.【答案】AD【分析】根據(jù)終邊相同的角的公式,將所有角轉(zhuǎn)化為終邊落在0°【詳解】∵2022°=222°+5×∴選項(xiàng)中只有?138°和222°故選:AD.8.(2022·全國·高一課時練習(xí))將一條射線繞著其端點(diǎn)順時針旋轉(zhuǎn)198°,再逆時針旋轉(zhuǎn)80【答案】?【分析】根據(jù)正負(fù)角的定義可直接求得結(jié)果.【詳解】∵順時針旋轉(zhuǎn)所成的角為負(fù)角,逆時針旋轉(zhuǎn)所成的角為正角,∴經(jīng)兩次旋轉(zhuǎn)后形成的角的度數(shù)為?198故答案為:?1189.(2022·上海市七寶中學(xué)附屬鑫都實(shí)驗(yàn)中學(xué)高一期末)與2023°【答案】223【分析】用誘導(dǎo)公式(一)轉(zhuǎn)化即可.【詳解】因?yàn)?023°=5×360°+故答案為:223°10.(2022·黑龍江·齊齊哈爾三立高級中學(xué)有限公司高三階段練習(xí))在0°到360°范圍內(nèi),與405【答案】45°【分析】根據(jù)終邊相同的角的表示,可得答案.【詳解】因?yàn)?05°所以在0°到360°范圍內(nèi),與405°終邊相同的角為故答案為:45°【考點(diǎn)2:象限角】【知識點(diǎn):象限角】[方法技巧]確定eq\f(α,n)(n≥2,n∈N*)終邊位置的方法步驟討論法(1)用終邊相同角的形式表示出角α的范圍;(2)寫出eq\f(α,n)的范圍;(3)根據(jù)k的可能取值討論確定eq\f(α,n)的終邊所在位置等分象限角法已知角α是第m(m=1,2,3,4)象限角,求eq\f(α,n)是第幾象限角.(1)等分:將每個象限分成n等份;(2)標(biāo)注:從x軸正半軸開始,按照逆時針方向順次循環(huán)標(biāo)上1,2,3,4,直至回到x軸正半軸;(3)選答:出現(xiàn)數(shù)字m的區(qū)域,即為eq\f(α,n)的終邊所在的象限1.(2022·江西·修水中等專業(yè)學(xué)校高三階段練習(xí))第二象限的角都是鈍角._____【答案】錯誤【分析】利用象限角的概念,即可得出該命題為假命題.【詳解】設(shè)第二象限角為θ,第二象限角的范圍是:π2+2kπ故8π故答案為:錯誤2.(2022·遼寧·東北育才學(xué)校高一期中)2022°是第(
)象限角.A.一 B.二 C.三 D.四【答案】C【分析】將2022°表示為k?360°+α(k∈Z【詳解】2022°=5×360°+222°,所以2022°是第三象限角.故選:C3.(2022·安徽·高三階段練習(xí))設(shè)角θ是第一象限角,且滿足cosθ2=-cosθ2A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】C【分析】由角θ是第一象限角寫出其范圍,再寫出其半角范圍為kπ<【詳解】由角θ是第一象限角,有2kπ<θ<2kπ+π故選:C.4.(2022·江西省萬載中學(xué)高一階段練習(xí))下列說法中,正確的是(
)A.第二象限的角是鈍角 B.第二象限的角必大于第一象限的角C.?150°是第二象限的角 D.?252°16【答案】D【分析】根據(jù)已知條件,結(jié)合象限角的定義與終邊相同的角的定義即可求解【詳解】對于A:當(dāng)角為510°是,該角為第二象限角,但不是鈍角,故A錯誤;對于B:分別取第一象限的角為730°,第二象限角510°,此時第一象限的角大于第二象限的角,故B錯誤;對于C:?150°是第三象限的角,故C錯誤;對于D:因?yàn)?67°44所以?252°16故選:D5.(2022·全國·高一課時練習(xí))已知角α的終邊與5π3的終邊重合,則α3的終邊不可能在(A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【分析】首先表示角α的取值,即可得到α3的取值,再對k【詳解】解:因?yàn)榻铅恋慕K邊與5π3所以α=5π3+2kπ,k∈Z,所以α令k=3n(n∈Z),則α3=5π令k=3n+1(n∈Z),則α3=11π令k=3n+2(n∈Z),則α3=17π所以α3故選:A.6.(2022·江西上饒·高一階段練習(xí))若α是第二象限角,則(
)A.π?α是第一象限角 B.α2C.3π2+α是第二象限角 D.【答案】AB【分析】由α與?α關(guān)于x軸對稱,即可判斷AD;由已知可得π2+2kπ<α<π+2kπ,k∈Z【詳解】解:因?yàn)棣僚c?α關(guān)于x軸對稱,而α是第二象限角,所以?α是第三象限角,所以π?α是第一象限角,故A正確,D錯誤;因?yàn)棣潦堑诙笙藿?,所以?+2kπ<α<π+2kπ,k∈Z,所以π4故α2是第一或第三象限角,故因?yàn)棣潦堑诙笙藿?,所?π2故選:AB.7.(2022·全國·高一課時練習(xí))若α是第二象限角,則180°-α是第______象限角.【答案】一【分析】利用象限角的定義進(jìn)行求解.【詳解】若α是第二象限角,則k?360°+所以?k?360°?即?k?360°<所以180°-α是第一象限角.故答案為:一.8.(2022·全國·高一課時練習(xí))若α=k?360°+24°,k∈Z【答案】2α為第一象限角;α2【分析】分別求得2α和α2,根據(jù)對k【詳解】由α=k?360°+24°由α=k?360°+當(dāng)k=2nn∈Z時,α2=n?當(dāng)k=2n+1n∈Z時,α2=n?綜上所述:2α為第一象限角;α2【考點(diǎn)3:弧度制】【知識點(diǎn):弧度制】1.弧度制的定義把長度等于半徑長的弧所對的圓心角叫做1弧度的角,弧度記作rad.2.角度制與弧度制的轉(zhuǎn)化:①1°=eq\f(π,180)rad;②1rad=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180,π)))°1.(2022·全國·高一課時練習(xí))將時鐘撥快10分鐘,則分針轉(zhuǎn)過的弧度是(
)A.π3 B.?π3 C.π【答案】B【分析】將分針撥快10分鐘,則分針順時針旋轉(zhuǎn)即為負(fù)角,且角度為圓周的16【詳解】將分針撥快10分鐘,即分針順時針旋轉(zhuǎn)圓周的16分針轉(zhuǎn)過的弧度為?10故選:B2.(2022·江西上饒·高一階段練習(xí))如圖所示的時鐘顯示的時刻為4:30,此時時針與分針的夾角為α(0<α≤π).則α=(
)A.π2 B.π4 C.π8【答案】B【分析】由圖可知α為周角的18【詳解】解:由圖可知,α=1故選:B.3.(2022·陜西·渭南高級中學(xué)高一階段練習(xí))若角α=3rad,則角α是(
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角【答案】B【分析】根據(jù)象限角的定義判斷.【詳解】因?yàn)棣?<3<π,所以故選:B.4.(2022·全國·高一專題練習(xí))已知集合M=xx=kπ4A.N?M B.M?NC.M=N D.M∩N=?【答案】A【分析】利用集合的基本關(guān)系求解【詳解】解:因?yàn)镸=xx=k當(dāng)k∈Z時,2k+1是奇數(shù),k+2是整數(shù),所以N?M.故選:A.5.(2022·江西·修水中等專業(yè)學(xué)校高三階段練習(xí))設(shè)r為圓的半徑,弧長為πr的圓弧所對的圓心角為(
)A.90° B.180° C.270° D.360°【答案】B【分析】根據(jù)弧長、圓心角、半徑的關(guān)系l=【詳解】由弧長、圓心角、半徑的關(guān)系:l=弧長為πr的圓弧所對的圓心角:α=故選:B6.(2022·安徽省舒城中學(xué)高一開學(xué)考試)315°角的弧度數(shù)為(
)A.3π4 B.7π4 C.?π【答案】B【分析】利用公式可求315°角的弧度數(shù).【詳解】315°角對應(yīng)的弧度數(shù)為315180故選:B.7.(2022·遼寧實(shí)驗(yàn)中學(xué)高二開學(xué)考試)下面關(guān)于弧度的說法,錯誤的是(
)A.弧長與半徑的比值是圓心角的弧度數(shù)B.一個角的角度數(shù)為n,弧度數(shù)為α,則n180C.長度等于半徑的3倍的弦所對的圓心角的弧度數(shù)為2πD.航海羅盤半徑為10cm,將圓周32等分,每一份的弧長為5π【答案】D【分析】根據(jù)弧度制與角度制的定義,以及轉(zhuǎn)化關(guān)系,即可判斷選項(xiàng).【詳解】A.根據(jù)弧度數(shù)定義可知A正確;B.根據(jù)弧度與角度的轉(zhuǎn)化關(guān)系,可知B正確;C.根據(jù)三角形關(guān)系可知,長度等于半徑的3倍的弦所對的圓心角為120°,即弧度數(shù)為2πD.圓周長為2πr=20πcm,32等分后,每一份弧長為5π故選:D8.(2022·全國·高一課時練習(xí))判斷正誤.(1)“度”與“弧度”是度量角的兩種不同的度量單位.()(2)用角度制和弧度制度量角,都與圓的半徑有關(guān).()(3)1°的角是周角的1360,1rad的角是周角的(4)1rad的角比1°【答案】
√
×
√
√【詳解】(1)“度”與“弧度”是度量角的兩種不同的度量單位,故正確;(2)弧度制度量角與兩邊夾角有關(guān),與半徑無關(guān),故錯誤;(3)1°的角是周角的1360,1rad的角是周角的(4)1°=π9.(2022·黑龍江·哈爾濱三中高三階段練習(xí))下列說法不正確的是(
)A.三角形的內(nèi)角是第一象限角或第二象限角B.cosC.1弧度的角就是長為半徑的弦所對的圓心角D.若sinα=sinβ,則α【答案】ACD【分析】根據(jù)任意角的基本概念和三角函數(shù)定義即可逐項(xiàng)判斷.【詳解】對于選項(xiàng)A,三角形內(nèi)角范圍是0,π,其中90°不屬于象限角,故A錯誤;對于選項(xiàng)B,大小為2的角終邊在第二象限,故cos2<0,故B正確;對于選項(xiàng)C,1弧度的角是長為半徑的“弧”所對的圓心角,故C錯誤;對于選項(xiàng)D,若sinα=sinβ,則α和β故選:ACD.10.(2021·江蘇省太湖高級中學(xué)高一階段練習(xí))下列結(jié)論中正確的是(
)A.終邊經(jīng)過點(diǎn)m,mm>0的角的集合是αB.將表的分針撥慢10分鐘,則分針轉(zhuǎn)過的角的弧度數(shù)是π3C.若α是第三象限角,則α2是第二象限角,2αD.M=xx=45°+k?90°,k∈Z,【答案】ABD【分析】直接以角的表示方法,象限角的概念,集合間的關(guān)系求出結(jié)果.【詳解】A.終邊經(jīng)過點(diǎn)m,mm>0的角的終邊在第一象限平分線上,故角的集合是αB.將表的分針撥慢10分鐘,按逆時針旋轉(zhuǎn),則分針轉(zhuǎn)過的角度為60°,對應(yīng)弧度數(shù)是π3C.因?yàn)棣潦堑谌笙藿?,?kπ+π<α<2kπ+3π2,k∈Z,所以kπ+π2<α2<kπ+3π4,k∈Z,當(dāng)k為奇數(shù)時,D.M=xN=yy=90°+k?45°,k∈Z=故選:ABD.11.(2021·上海市光明中學(xué)高一期中)將角度換算成弧度:100°=____________rad.【答案】5【分析】根據(jù)角度制與弧度制的互化計算即可.【詳解】解:100°=100×π故答案為:5912.(2022·全國·高一課時練習(xí))若兩個角的差為1弧度,和為1°,則這兩個角的弧度數(shù)分別為______.【答案】π360+【分析】設(shè)這兩個角的弧度數(shù)分別為α,β,先將1°化為弧度,然后由條件可得方程α?β=1α+β=【詳解】設(shè)這兩個角的弧度數(shù)分別為α,β,α>β,因?yàn)?°=π所以α?β=1α+β=π180,則α=π360故答案為:π360+13.(2022·全國·高一課時練習(xí))把弧度化成角度:(1)3π10【答案】
54°
360【分析】根據(jù)結(jié)論πrad=180【詳解】(1)3π10(2)2rad故答案為:54°,360π【考點(diǎn)4:弧長公式與扇形的面積公式】【知識點(diǎn):弧長公式與扇形的面積公式】角α的弧度數(shù)公式|α|=eq\f(l,r)(弧長用l表示)弧長公式弧長l=|α|r扇形面積公式S=eq\f(1,2)lr=eq\f(1,2)|α|r21.(2023·廣東·高三學(xué)業(yè)考試)一個扇形的弧長與面積的數(shù)值都是3,則該扇形圓心角的弧度數(shù)為()A.12 B.23 C.3【答案】C【分析】由扇形的弧長公式和面積公式列方程組求解.【詳解】設(shè)扇形的圓心角的弧度數(shù)為α,半徑為r,則αr=3,12故選:C.2.(2021·天津·高一期末)已知扇形AOB的面積為8,且圓心角弧度數(shù)為2,則扇形AOB的周長為(
)A.32 B.24 C.62 D.【答案】D【分析】根據(jù)扇形面積和弧長公式即可求解.【詳解】圓心角α=2,扇形面積S即8=12×2×所以弧長l=故扇形AOB的周長L=故選:D3.(2022·上海市向明中學(xué)高一期末)已知扇形的周長為6cm,半徑為2cm,則該扇形的面積是___________【答案】2【分析】首先求出弧長,即可求出圓心角,再根據(jù)扇形面積公式計算可得.【詳解】解:因?yàn)樯刃蔚闹荛L為6cm,半徑r=2cm,所以扇形的弧長為設(shè)扇形的圓心角的弧度數(shù)為α,由弧長公式得2=2α,解得α=1,所以該扇形的面積是12故答案為:24.(2022·上海市嘉定區(qū)第一中學(xué)高二期中)已知扇形的中心角為2弧度,扇形的半徑為3,則此扇形的弧長為___________.【答案】6【分析】利用弧長公式l=αr求弧長.【詳解】因?yàn)樯刃蔚闹行慕菫?弧度,扇形半徑為3,所以扇形的弧長l=2×3=6.故答案為:6.5.(2022·上海市延安中學(xué)高三期中)已知扇形的圓心角為π3,其弧長為π,則此扇形的面積為_________.(結(jié)果保留π【答案】3【分析】首先根據(jù)弧長公式求半徑,再根據(jù)扇形面積公式,即可求解.【詳解】根據(jù)條件可知扇形所在圓的半徑r=l此扇形的面積s=1故答案為:36.(2022·江西贛州·高三期中(文))古代文人墨客與丹青手都善于在紙扇上題字題畫,題字題畫的部分多為扇環(huán).已知某扇形的扇環(huán)如圖所示,其中外弧線的長為60cm,內(nèi)弧線的長為2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 用電設(shè)備智能化檢測技術(shù)在企業(yè)中的實(shí)施效果
- 2025年度講師培訓(xùn)品牌合作推廣合同
- 電商平臺用戶體驗(yàn)的持續(xù)優(yōu)化策略
- 生產(chǎn)線效率提升與資源調(diào)度分析
- 生產(chǎn)現(xiàn)場5S管理提升員工素質(zhì)的途徑
- 現(xiàn)代城市雕塑與夜間光影藝術(shù)的結(jié)合
- 現(xiàn)代商業(yè)環(huán)境下的心理調(diào)適與中醫(yī)養(yǎng)生法
- 現(xiàn)代農(nóng)業(yè)裝備技術(shù)教育與創(chuàng)新培訓(xùn)案例
- 2025年度建筑泥工工程勞務(wù)及綠色建筑認(rèn)證服務(wù)合同
- 湘教版數(shù)學(xué)九年級下冊《2.2.3圓周角定理的推論》聽評課記錄
- 2023年上海青浦區(qū)區(qū)管企業(yè)統(tǒng)一招考聘用筆試題庫含答案解析
- 2023年高一物理期末考試卷(人教版)
- 2023版押品考試題庫必考點(diǎn)含答案
- 植物之歌觀后感
- 空氣能熱泵安裝示意圖
- 建筑工程施工質(zhì)量驗(yàn)收規(guī)范檢驗(yàn)批填寫全套表格示范填寫與說明
- 2020年中秋國慶假日文化旅游市場安全生產(chǎn)檢查表
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 七年級英語下冊閱讀理解10篇
- 節(jié)后開工收心會
- 設(shè)計質(zhì)量、進(jìn)度保證措施
評論
0/150
提交評論