版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題49誘導(dǎo)公式五和公式六1.公式五(1)角eq\f(π,2)-α與角α的終邊關(guān)于直線y=x對稱,如圖所示.(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα.2.公式六(1)公式五與公式六中角的聯(lián)系eq\f(π,2)+α=π-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)).(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα.3.誘導(dǎo)公式一~六中的角可歸納為k·eq\f(π,2)±α的形式,可概括為“奇變偶不變,符號看象限”.①“變”與“不變”是針對互余關(guān)系的函數(shù)而言的.②“奇”“偶”是對誘導(dǎo)公式k·eq\f(π,2)±α中的整數(shù)k來講的.③“象限”指k·eq\f(π,2)±α中,將α看成銳角時,k·eq\f(π,2)±α所在的象限,根據(jù)“一全正,二正弦,三正切,四余弦”的符號規(guī)律確定原函數(shù)值的符號.4.利用誘導(dǎo)公式五、六,結(jié)合誘導(dǎo)公式二,還可以推出如下公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinα,sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sinα.題型一利用誘導(dǎo)公式化簡與求值1.下列與sinθ的值相等的是()A.sin(π+θ)B.sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ)) D.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))2.化簡sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=________.3.下列各式中,不正確的是()A.sin(180°-α)=sinαB.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=sineq\f(α,2)C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinαD.tan(-α)=-tanα4.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))<0,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))>0,則θ是()A.第一象限角 B.第二象限角C.第三角限角 D.第四象限角5.化簡sin(π+α)coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos(π+α)=________.6.化簡:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cosπ+α)-eq\f(sin2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),sinπ-α).7.化簡:eq\f(sinθ-5πcos\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-θ))cos8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))sin-θ-4π)=()A.-sinθB.sinθC.cosθ D.-cosθ8.化簡:eq\f(sin2π+αcosπ-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)),cosπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α)))=________.9.化簡:eq\f(cosα-π,sinπ-α)·sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)).10.eq\f(sin2π-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))cosπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,6)-2α)))等于()A.-cosαB.cosαC.sinα D.-sinα11.化簡:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cos(π+α))+eq\f(sin(π-α)cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),sin(π+α)).12.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=eq\f(1,5),那么cosα=13.已知cosθ=-eq\f(3,5),則sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=________.14.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=eq\f(\r(3),2),且|φ|<eq\f(π,2),則tanφ=________.15.如果cos(π+A)=-eq\f(1,2),那么sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=16.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-eq\f(3,5),且α是第二象限角,則sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))的結(jié)果是17.若cos(α+π)=-eq\f(2,3),則sin(-α-eq\f(3π,2))=18.已知cosα=eq\f(1,5),且α為第四象限角,那么coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=________.19.若sin(3π+α)=-eq\f(1,2),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))等于20.已知cos(π+α)=-eq\f(1,2),α為第一象限角,求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))的值.21.已知α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3π,2))),coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2),則tan(2018π-α)=22.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,4)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))的值為23.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))等于24.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))的值為________.25.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=eq\f(3,5),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))的值為________.26.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,12)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=________.27.已知α是第四象限角,且cos(5°+α)=eq\f(4,5),則cos(α-85°)=________.28.已知sin10°=k,則cos620°的值為()A.k B.-kC.±k D.不確定29.已知cosα=eq\f(1,3),則sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=________.30.已知cos31°=m,則sin239°tan149°的值是()A.eq\f(1-m2,m)B.eq\r(1-m2)C.-eq\f(1-m2,m) D.-eq\r(1-m2)31.若sin(180°+α)+cos(90°+α)=-a,則cos(270°-α)+2sin(360°-α)的值是32.化簡eq\f(sin400°sin-230°,cos850°tan-50°)的結(jié)果為________.33.若f(cosx)=cos2x,則f(sin15°)的值為34.已知f(sinx)=cos3x,則f(cos10°)的值為35.若f(sinx)=3-cos2x,則f(cosx)=()A.3-cos2xB.3-sin2xC.3+cos2x D.3+sin2x36.計算sin21°+sin22°+sin23°+…+sin289°=37.在△ABC中,eq\r(3)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-A))=3sin(π-A),且cosA=-eq\r(3)cos(π-B),則C=________.題型二利用誘導(dǎo)公式證明恒等式1.求證:eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=-tanα.2.求證:eq\f(cosπ-θ,cosθ\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))-1)))+eq\f(cos2π-θ,cosπ+θsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=eq\f(2,sin2θ).3.求證:eq\f(sinθ+cosθ,sinθ-cosθ)=eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2π+θ).4.求證:eq\f(cos6π+θsin-2π-θtan2π-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=-tanθ.5.求證:eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=-1.6.求證:eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2θ)=eq\f(tan9π+θ+1,tanπ+θ-1).題型三誘導(dǎo)公式的綜合應(yīng)用1.已知銳角α終邊上一點P的坐標是(2sin2,-2cos2),則α等于________.2.已知f(α)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),cos-π-αtanπ-α),則feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))的值為________.3.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=eq\f(1,3),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))的值.4.已知cos(15°+α)=eq\f(3,5),α為銳角,求eq\f(tan435°-α+sinα-165°,cos195°+α·sin105°+α)的值.5.已知角α的終邊經(jīng)過點Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))).(1)求sinα的值;(2)求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)的值.6.已知tanθ=2,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)的值.7.已知tan(3π+α)=2,則eq\f(sinα-3π+cosπ-α+sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))-2cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),-sin-α+cosπ+α)=________.8.已知eq\f(sinθ+cosθ,sinθ-cosθ)=2,則sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=________.9.已知cosα=-eq\f(4,5),且α為第三象限角.求f(α)=eq\f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cosπ+α)的值.10.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),則eq\f(sin(π-α)+cos(π+α),5cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)))=________.11.已知sin(α-3π)=2cos(α-4π),求eq\f(sin(π-α)+5cos(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.12.已知角θ的頂點在坐標原點,始邊與x軸正半軸重合,終邊在直線3x-y=0上,則eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=________.13.已知cos(75°+α)=eq\f(1,3),則sin(α-15°)+cos(105°-α)的值是14.已知α,β∈(0,eq\f(π,2)),且α,β的終邊關(guān)于直線y=x對稱,若sinα=eq\f(3,5),則sinβ=15.已知角α的終邊在第二象限,且與單位圓交于點P(a,eq\f(3,5)),求eq\f(sin(\f(π,2)+α)+2sin(\f(π,2)-α),2cos(\f(3π,2)-α))的值.16.已知f(α)=eq\f(tanπ-αcos2π-αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cos-α-π).(1)化簡f(α);(2)若feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-eq\f(3,5),且α是第二象限角,求tanα.17.已知f(α)=eq\f(sinπ-αcos2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(-α+\f(3π,2))),cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))sin-π-α).(1)化簡f(α);(2)若α為第三象限角,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=eq\f(1,5),求f(α)的值;(3)若α=-eq\f(31π,3),求f(α)的值.18.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(-α-\f(3,2)π))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-α)),cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)))·tan2(π-α)的值.19.若sinα=eq\f(\r(5),5),求eq\f(cos3π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)+α))-1)))+eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α)),cos3π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)+α)))的值.20.在△ABC中,sineq\f(A+B-C,2)=sineq\f(A-B+C,2),試判斷△ABC的形狀.21.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-α))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(5π,2)-α))=eq\f(60,169),且eq\f(π,4)<α<eq\f(π,2),求sinα與cosα的值.22.已知sin(π-α)-cos(π+α)=eq\f(\r(,2),3)(eq\f(π,2)<α<π),求下列各式的值.(1)sinα-cosα;(2)cos2(eq\f(π,2)+α)-cos2(-α).23.已知函數(shù)f(α)=eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(2π-α),tan(α+π)sin(α+π)).(1)化簡f(α);(2)若f(α)·feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=-eq\f(1,8),且eq\f(5π,4)≤α≤eq\f(3π,2),求f(α)+feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))的值;(3)若feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=2f(α),求f(α)·feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))的值.24.是否存在角α,β,α∈(-eq\f(π,2),eq\f(π,2)),β∈(0,π),使等式sin(3π-α)=eq\r(2)cos(eq\f(π,2)-β),eq\r(3)cos(-α)=-eq\r(2)cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由.25.已知f(cosx)=cos17x.(1)求證:f(sinx)=sin17x;(2)對于怎樣的整數(shù)n,能由f(sinx)=sinnx推出f(cosx)=cosnx?專題49誘導(dǎo)公式五和公式六1.公式五(1)角eq\f(π,2)-α與角α的終邊關(guān)于直線y=x對稱,如圖所示.(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα.2.公式六(1)公式五與公式六中角的聯(lián)系eq\f(π,2)+α=π-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)).(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα.3.誘導(dǎo)公式一~六中的角可歸納為k·eq\f(π,2)±α的形式,可概括為“奇變偶不變,符號看象限”.①“變”與“不變”是針對互余關(guān)系的函數(shù)而言的.②“奇”“偶”是對誘導(dǎo)公式k·eq\f(π,2)±α中的整數(shù)k來講的.③“象限”指k·eq\f(π,2)±α中,將α看成銳角時,k·eq\f(π,2)±α所在的象限,根據(jù)“一全正,二正弦,三正切,四余弦”的符號規(guī)律確定原函數(shù)值的符號.4.利用誘導(dǎo)公式五、六,結(jié)合誘導(dǎo)公式二,還可以推出如下公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinα,sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sinα.題型一利用誘導(dǎo)公式化簡與求值1.下列與sinθ的值相等的是()A.sin(π+θ)B.sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ)) D.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))[解析]sin(π+θ)=-sinθ;sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=cosθ;coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=sinθ;coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))=-sinθ.2.化簡sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(π+\f(π,2)+α))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-cosα.3.下列各式中,不正確的是()A.sin(180°-α)=sinαB.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=sineq\f(α,2)C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinαD.tan(-α)=-tanα[解析]由誘導(dǎo)公式知A、D正確.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(π+\f(π,2)-α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-sinα,故C正確.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(90°+\f(α,2)))=-sineq\f(α,2),故B不正確.4.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))<0,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))>0,則θ是()A.第一象限角 B.第二象限角C.第三角限角 D.第四象限角[解析]由于sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))=cosθ<0,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=sinθ>0,所以角θ的終邊落在第二象限,故選B.5.化簡sin(π+α)coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos(π+α)=________.[解析]原式=(-sinα)·sinα+cosα·(-cosα)=-sin2α-cos2α=-1.6.化簡:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cosπ+α)-eq\f(sin2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),sinπ-α).[解析]原式=eq\f(cosα-sinα,-cosα)-eq\f(sin-αsinα,sinα)=sinα-(-sinα)=2sinα.7.化簡:eq\f(sinθ-5πcos\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-θ))cos8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))sin-θ-4π)=()A.-sinθB.sinθC.cosθ D.-cosθ[解析]原式=eq\f(sinθ-πcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))cosθ,cosθsin-θ)=eq\f(-sinθ-sinθcosθ,cosθ-sinθ)=-sinθ.8.化簡:eq\f(sin2π+αcosπ-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)),cosπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α)))=________.[解析]原式=eq\f(sinα·-cosα·sinα·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),-cosα·sinα·[-sinπ-α]sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)))=eq\f(sinα·-sinα,-sinα·cosα)=tanα9.化簡:eq\f(cosα-π,sinπ-α)·sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)).[解析]原式=eq\f(cos[-π-α],sinα)·sineq\b\lc\[\rc\](\a\vs4\al\co1(-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))))(-sinα)=eq\f(cosπ-α,sinα)·eq\b\lc\[\rc\](\a\vs4\al\co1(-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))))(-sinα)=eq\f(-cosα,sinα)·(-cosα)(-sinα)=-cos2α.10.eq\f(sin2π-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))cosπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,6)-2α)))等于()A.-cosαB.cosαC.sinα D.-sinα[解析]原式=eq\f(sin-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))·-cosα,tanα·cosα·sin\b\lc\[\rc\](\a\vs4\al\co1(\f(3,2)π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)))))=eq\f(sinαcosα·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)),tanαcosα\b\lc\[\rc\](\a\vs4\al\co1(-cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)))))=-cosα.故選A.11.化簡:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cos(π+α))+eq\f(sin(π-α)cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),sin(π+α)).[解析]因為sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα,cos(π+α)=-cosα,sin(π-α)=sinα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα,sin(π+α)=-sinα,所以原式=eq\f(cosα·sinα,-cosα)+eq\f(sinα·(-sinα),-sinα)=-sinα+sinα=0.12.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=eq\f(1,5),那么cosα=[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2π+\f(π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα=eq\f(1,5).13.已知cosθ=-eq\f(3,5),則sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=cosθ=-eq\f(3,5).14.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=eq\f(\r(3),2),且|φ|<eq\f(π,2),則tanφ=________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=-sinφ=eq\f(\r(3),2),sinφ=-eq\f(\r(3),2),又∵|φ|<eq\f(π,2),∴cosφ=eq\f(1,2),故tanφ=-eq\r(3).15.如果cos(π+A)=-eq\f(1,2),那么sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=[解析]∵cos(π+A)=-cosA=-eq\f(1,2),∴cosA=eq\f(1,2),∴sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=cosA=eq\f(1,2)16.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-eq\f(3,5),且α是第二象限角,則sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))的結(jié)果是[解析]∵coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα=-eq\f(3,5),∴sinα=eq\f(3,5),且α是第二象限角,∴cosα=-eq\r(1-sin2α)=-eq\f(4,5).而sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-(-cosα)=cosα=-eq\f(4,5)17.若cos(α+π)=-eq\f(2,3),則sin(-α-eq\f(3π,2))=[解析]因為cos(α+π)=-cosα=-eq\f(2,3),所以cosα=eq\f(2,3).所以sineq\b\lc\(\rc\)(\a\vs4\al\co1(-α-\f(3π,2)))=cosα=eq\f(2,3).18.已知cosα=eq\f(1,5),且α為第四象限角,那么coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=________.[解析]因為cosα=eq\f(1,5),且α為第四象限角,所以sinα=-eq\r(1-cos2α)=-eq\f(2\r(6),5),所以coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=-sinα=eq\f(2\r(6),5).19.若sin(3π+α)=-eq\f(1,2),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))等于[解析]∵sin(3π+α)=-sinα=-eq\f(1,2),∴sinα=eq\f(1,2).∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-sinα=-eq\f(1,2).20.已知cos(π+α)=-eq\f(1,2),α為第一象限角,求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))的值.[解析]因為cos(π+α)=-cosα=-eq\f(1,2),所以cosα=eq\f(1,2),又α為第一象限角.則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(2))=-eq\f(\r(3),2).21.已知α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3π,2))),coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2),則tan(2018π-α)=[解析]由coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2)得sinα=-eq\f(\r(,3),2),又0<α<eq\f(3π,2),所以π<α<eq\f(3π,2),所以cosα=-eq\r(,1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(,3),2)))\s\up12(2))=-eq\f(1,2),tanα=eq\r(,3).因為tan(2018π-α)=tan(-α)=-tanα=-eq\r(,3)22.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,4)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))的值為[解析]∵coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=eq\f(1,3).23.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))等于[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)+\f(π,2)))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=-eq\f(1,3).24.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))的值為________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2).25.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=eq\f(3,5),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))的值為________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=-eq\f(3,5).26.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,12)))=eq\f(1,3),則coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,12)+α))))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,12)+α))=-eq\f(1,3).27.已知α是第四象限角,且cos(5°+α)=eq\f(4,5),則cos(α-85°)=________.[解析]因為α是第四象限角,且cos(5°+α)=eq\f(4,5)>0,所以5°+α是第四象限角,所以sin(5°+α)=-eq\r(1-cos25°+α)=-eq\f(3,5),所以cos(α-85°)=cos(5°+α-90°)=sin(5°+α)=-eq\f(3,5).28.已知sin10°=k,則cos620°的值為()A.k B.-kC.±k D.不確定[解析]cos620°=cos(360°+260°)=cos260°=cos(270°-10°)=-sin10°=-k.29.已知cosα=eq\f(1,3),則sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=-cosαsinα(-tanα)=sin2α=1-cos2α=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))2=eq\f(8,9).30.已知cos31°=m,則sin239°tan149°的值是()A.eq\f(1-m2,m)B.eq\r(1-m2)C.-eq\f(1-m2,m) D.-eq\r(1-m2)[解析]sin239°tan149°=sin(180°+59°)·tan(180°-31°)=-sin59°(-tan31°)=-sin(90°-31°)·(-tan31°)=-cos31°·(-tan31°)=sin31°=eq\r(1-cos231°)=eq\r(1-m2).31.若sin(180°+α)+cos(90°+α)=-a,則cos(270°-α)+2sin(360°-α)的值是[解析]由sin(180°+α)+cos(90°+α)=-a,得-sinα-sinα=-a,即sinα=eq\f(a,2),cos(270°-α)+2sin(360°-α)=-sinα-2sinα=-3sinα=-eq\f(3,2)a.32.化簡eq\f(sin400°sin-230°,cos850°tan-50°)的結(jié)果為________.[解析]eq\f(sin400°sin-230°,cos850°tan-50°)=eq\f(sin360°+40°[-sin180°+50°],cos720°+90°+40°-tan50°)=eq\f(sin40°sin50°,sin40°tan50°)=eq\f(sin50°,\f(sin50°,cos50°))=cos50°.33.若f(cosx)=cos2x,則f(sin15°)的值為[解析]因為f(sin15°)=f(cos75°)=cos150°=-eq\f(\r(3),2).34.已知f(sinx)=cos3x,則f(cos10°)的值為[解析]f(cos10°)=f(sin80°)=cos240°=cos(180°+60°)=-cos60°=-eq\f(1,2).35.若f(sinx)=3-cos2x,則f(cosx)=()A.3-cos2xB.3-sin2xC.3+cos2x D.3+sin2x[解析]f(cosx)=feq\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-x))))=3-cos(π-2x)=3+cos2x,故選C.36.計算sin21°+sin22°+sin23°+…+sin289°=[解析]原式=(sin21°+sin289°)+(sin22°+sin288°)+…+(sin244°+sin246°)+sin245°=44+eq\f(1,2)=eq\f(89,2).37.在△ABC中,eq\r(3)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-A))=3sin(π-A),且cosA=-eq\r(3)cos(π-B),則C=________.[解析]由題意得eq\b\lc\{\rc\(\a\vs4\al\co1(\r(3)cosA=3sinA,①,cosA=\r(3)cosB,②))由①得tanA=eq\f(\r(3),3),故A=eq\f(π,6).由②得cosB=eq\f(cos\f(π,6),\r(3))=eq\f(1,2),故B=eq\f(π,3).故C=eq\f(π,2).題型二利用誘導(dǎo)公式證明恒等式1.求證:eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=-tanα.[解析]左邊=eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=eq\f(tan-α-sinαcosα,-cosαsinα)=eq\f(-tanαsinαcosα,cosαsinα)=-tanα=右邊,所以原等式成立.2.求證:eq\f(cosπ-θ,cosθ\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))-1)))+eq\f(cos2π-θ,cosπ+θsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=eq\f(2,sin2θ).[解析]左邊=eq\f(-cosθ,cosθ-cosθ-1)+eq\f(cosθ,-cosθcosθ+cosθ)=eq\f(1,1+cosθ)+eq\f(1,1-cosθ)=eq\f(1-cosθ+1+cosθ,1+cosθ1-cosθ)=eq\f(2,1-cos2θ)=eq\f(2,sin2θ)=右邊.∴原式成立.3.求證:eq\f(sinθ+cosθ,sinθ-cosθ)=eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2π+θ).[解析]右邊=eq\f(-2sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))·-sinθ-1,1-2sin2θ)=eq\f(2sin\b\lc\[\rc\](\a\vs4\al\co1(π+\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))))sinθ-1,1-2sin2θ)=eq\f(-2sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))sinθ-1,1-2sin2θ)=eq\f(-2cosθsinθ-1,cos2θ+sin2θ-2sin2θ)=eq\f(sinθ+cosθ2,sin2θ-cos2θ)=eq\f(sinθ+cosθ,sinθ-cosθ)=左邊,所以原等式成立.4.求證:eq\f(cos6π+θsin-2π-θtan2π-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=-tanθ.[解析]左邊=eq\f(cosθsin-θtan-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ)))=eq\f(cosθsinθtanθ,-sinθcosθ)=-tanθ=右邊,所以原等式成立.5.求證:eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=-1.[解析]因為eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(2π+\f(π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,2)-2π))tan-x)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+x)),-sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,2)))tanx)=eq\f(-sinx,cosxtanx)=-1=右邊,所以原等式成立.6.求證:eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2θ)=eq\f(tan9π+θ+1,tanπ+θ-1).[解析]左邊=eq\f(-2cosθ·sinθ-1,sin2θ+cos2θ-2sin2θ)=eq\f(-sinθ+cosθ2,cosθ+sinθcosθ-sinθ)=eq\f(sinθ+cosθ,sinθ-cosθ),右邊=eq\f(tan8π+π+θ+1,tanπ+θ-1)=eq\f(tanπ+θ+1,tanπ+θ-1)=eq\f(tanθ+1,tanθ-1)=eq\f(\f(sinθ,cosθ)+1,\f(sinθ,cosθ)-1)=eq\f(sinθ+cosθ,sinθ-cosθ),所以等式成立.題型三誘導(dǎo)公式的綜合應(yīng)用1.已知銳角α終邊上一點P的坐標是(2sin2,-2cos2),則α等于________.[解析]cosα=eq\f(2sin2,\r(2sin22+-2cos22))=sin2,∴α=2-eq\f(π,2).2.已知f(α)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),cos-π-αtanπ-α),則feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))的值為________.[解析]∵f(α)=eq\f(-sinα-cosα,-cosα-tanα)=cosα,∴feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))=coseq\f(25,3)π=coseq\b\lc\(\rc\)(\a\vs4\al\co1(8π+\f(π,3)))=coseq\f(π,3)=eq\f(1,2).3.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=eq\f(1,3),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))的值.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))))·sineq\b\lc\[\rc\](\a\vs4\al\co1(π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+α))))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·sineq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=-eq\f(1,3)×eq\f(1,3)=-eq\f(1,9).4.已知cos(15°+α)=eq\f(3,5),α為銳角,求eq\f(tan435°-α+sinα-165°,cos195°+α·sin105°+α)的值.[解析]原式=eq\f(tan360°+75°-α-sinα+15°,cos180°+15°+α·sin[180°+α-75°])=eq\f(tan75°-α-sinα+15°,-cos15°+α·[-sinα-75°])=-eq\f(1,cos15°+α·sin15°+α)+eq\f(sinα+15°,cos15°+α·cos15°+α).因為α為銳角,所以0°<α<90°,所以15°<α+15°<105°.又cos(15°+α)=eq\f(3,5),所以sin(15°+α)=eq\f(4,5),故原式=-eq\f(1,\f(3,5)×\f(4,5))+eq\f(\f(4,5),\f(3,5)×\f(3,5))=eq\f(5,36).5.已知角α的終邊經(jīng)過點Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))).(1)求sinα的值;(2)求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)的值.[解析](1)因為點Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))),所以|OP|=1,sinα=-eq\f(3,5).(2)eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)=eq\f(cosαtanα,-sinα-cosα)=eq\f(1,cosα),由三角函數(shù)定義知cosα=eq\f(4,5),故所求式子的值為eq\f(5,4).6.已知tanθ=2,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)的值.[解析]eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=eq\f(cosθ--cosθ,cosθ-sinθ)=eq\f(2cosθ,cosθ-sinθ)=eq\f(2,1-tanθ)=eq\f(2,1-2)=-2.7.已知tan(3π+α)=2,則eq\f(sinα-3π+cosπ-α+sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))-2cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),-sin-α+cosπ+α)=________.[解析]由tan(3π+α)=2,得tanα=2,所以原式=eq\f(-sinα+-cosα+cosα-2-sinα,sinα-cosα)=eq\f(sinα,sinα-cosα)=eq\f(tanα,tanα-1)=eq\f(2,2-1)=2.8.已知eq\f(sinθ+cosθ,sinθ-cosθ)=2,則sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=________.[解析]∵eq\f(sinθ+cosθ,sinθ-cosθ)=2,sinθ=3cosθ,∴tanθ=3.sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=sinθcosθ=eq\f(sinθcosθ,sin2θ+cos2θ)=eq\f(tanθ,tan2θ+1)=eq\f(3,10).9.已知cosα=-eq\f(4,5),且α為第三象限角.求f(α)=eq\f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cosπ+α)的值.[解析]因為cosα=-eq\f(4,5),且α為第三象限角,所以sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(4,5)))2)=-eq\f(3,5).所以f(α)=eq\f(-tanα·sinα·cosα,-cosα)=tanαsinα=eq\f(sinα,cosα)·sinα=eq\f(-\f(3,5),-\f(4,5))×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5)))=-eq\f(9,20).10.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),則eq\f(sin(π-α)+cos(π+α),5cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)))=________.[解析]因為coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),所以sinα=2cosα.原式=eq\f(sinα-cosα,5sinα-3cosα)=eq\f(2cosα-cosα,10cosα-3cosα)=eq\f(1,7).11.已知sin(α-3π)=2cos(α-4π),求eq\f(sin(π-α)+5cos(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.[解析]因為sin(α-3π)=2cos(α-4π),所以-sin(3π-α)=2cos(4π-α),所以-sin(π-α)=2cos(-α),所以sinα=-2cosα,且cosα≠0,所以原式=eq\f(sinα+5cosα,-2cosα+sinα)=eq\f(-2cosα+5cosα,-2cosα-2cosα)=eq\f(3cosα,-4cosα)=-eq\f(3,4).12.已知角θ的頂點在坐標原點,始邊與x軸正半軸重合,終邊在直線3x-y=0上,則eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=________.[解析]設(shè)θ的終邊上一點為P(x,3x)(x≠0),則tanθ=eq\f(y,x)=eq\f(3x,x)=3.因此eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=eq\f(-cosθ-2cosθ,cosθ-sinθ)=eq\f(-3cosθ,cosθ-sinθ)=eq\f(-3,1-tanθ)=eq\f(-3,1-3)=eq\f(3,2).13.已知cos(75°+α)=eq\f(1,3),則sin(α-15°)+cos(10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)園風(fēng)險評估與應(yīng)對措施
- 應(yīng)急響應(yīng)機制的建立
- 二零二五年度個人房地產(chǎn)居間傭金分配合同范本4篇
- 二零二五年度個人股份質(zhì)押合同樣本:有限責(zé)任公司股權(quán)融資專用2篇
- 部編版一年級語文下冊第18課《棉花姑娘》精美課件
- 2025版消防工程知識產(chǎn)權(quán)保護及授權(quán)合同范本2篇
- 二零二五年度個人出租辦公室租賃合同(含高速網(wǎng)絡(luò)接入)3篇
- 二零二五年度個人文化創(chuàng)意產(chǎn)業(yè)園土地租賃承包合同
- 二零二五年度非物質(zhì)文化遺產(chǎn)收藏品轉(zhuǎn)讓合同2篇
- 2025私宅房屋買賣合同附加稅費籌劃條款3篇
- 湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試參考試題庫(含答案)
- 英漢互譯單詞練習(xí)打印紙
- 2023湖北武漢華中科技大學(xué)招聘實驗技術(shù)人員24人筆試參考題庫(共500題)答案詳解版
- 一氯二氟甲烷安全技術(shù)說明書MSDS
- 母嬰護理員題庫
- 老年人預(yù)防及控制養(yǎng)老機構(gòu)院內(nèi)感染院內(nèi)感染基本知識
- SWITCH暗黑破壞神3超級金手指修改 版本號:2.7.6.90885
- 2023高考語文全國甲卷詩歌閱讀題晁補之《臨江仙 身外閑愁空滿眼》講評課件
- 物流簽收回執(zhí)單
- 鋼結(jié)構(gòu)廠房造價指標
- 安徽涵豐科技有限公司年產(chǎn)6000噸磷酸酯阻燃劑DOPO、4800噸磷酸酯阻燃劑DOPO衍生品、12000噸副產(chǎn)品鹽酸、38000噸聚合氯化鋁、20000噸固化劑項目環(huán)境影響報告書
評論
0/150
提交評論