2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷含解析_第1頁
2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷含解析_第2頁
2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷含解析_第3頁
2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷含解析_第4頁
2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省大慶市林甸四中學中考數(shù)學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC2.下列方程中,沒有實數(shù)根的是()A. B.C. D.3.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.4.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現(xiàn)售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.455.關于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-46.cos30°的相反數(shù)是()A. B. C. D.7.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°8.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm9.一次函數(shù)與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個10.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π11.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.1612.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.14.分解因式:=___________.15.如圖,正△ABO的邊長為2,O為坐標原點,A在x軸上,B在第二象限,△ABO沿x軸正方向作無滑動的翻滾,經(jīng)第一次翻滾后得到△A1B1O,則翻滾2017次后AB中點M經(jīng)過的路徑長為______.16.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.17.如圖,隨機閉合開關,,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.18.計算a10÷a5=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.20.(6分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經(jīng)過A、B兩點,并與x軸交于另一點C(點C點A的右側),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內(nèi),過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.21.(6分)如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.22.(8分)在“弘揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調(diào)查了部分學生,結果統(tǒng)計如下:(1)根據(jù)題中信息補全條形統(tǒng)計圖.(2)所抽取的學生參加其中一項活動的眾數(shù)是.(3)學校現(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?23.(8分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.24.(10分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經(jīng)過O、C兩點,且圓心在∠AOB的平分線上.25.(10分)某校對學生就“食品安全知識”進行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).26.(12分)如圖,一次函數(shù)y=﹣12x+52的圖象與反比例函數(shù)y=(1)求反比例函數(shù)的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.27.(12分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結DM,交AB于點N.若tanA=12,求DN

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

在復雜的圖形中具有相等關系的兩角首先要判斷它們是否是同位角或內(nèi)錯角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據(jù)內(nèi)錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.【點睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關鍵,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.2、B【解析】

分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;

B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;

C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.

故選:B.【點睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0根時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.3、D【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】解:根據(jù)軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.

故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形4、C【解析】

根據(jù)題意列出代數(shù)式,化簡即可得到結果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點睛】本題考查的知識點是列代數(shù)式,解題的關鍵是熟練的掌握列代數(shù)式.5、C【解析】

對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式6、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.7、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.8、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.9、B【解析】

仔細觀察圖象,①k的正負看函數(shù)圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數(shù)圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數(shù)圖象在上面,則哪個函數(shù)值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數(shù)性質的應用.正確理解一次函數(shù)的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.10、A【解析】

根據(jù)旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據(jù)旋轉的性質和弧長公式解答.11、B【解析】根據(jù)平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質:①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.12、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵.14、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.【點睛】此題主要考查了公式法分解因式,正確應用完全平方公式是解題關鍵.15、(+896)π.【解析】

由圓弧的弧長公式及正△ABO翻滾的周期性可得出答案.【詳解】解:如圖作⊥x軸于E,易知OE=5,,,觀察圖象可知3三次一個循環(huán),一個循環(huán)點M的運動路徑為==,翻滾2017次后AB中點M經(jīng)過的路徑長為,故答案:【點睛】本題主要考查圓弧的弧長公式及三角形翻滾的周期性,熟悉并靈活運用各知識是解題的關鍵.16、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.17、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結果,且每種結果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關為:K1、K3與K3、K1共兩種結果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.18、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點:同底數(shù)冪的除法.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內(nèi)角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考常考題型20、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點,∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點,∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點作NH⊥x軸于點H.設OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點,∴MH=2-m.當△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點的坐標,然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點C的坐標.(2)求出線段PE長度的表達式,設D點橫坐標為t,則可以將PE表示為關于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質和勾股定理,將直線l的存在性問題轉化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應Q點的坐標.“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.21、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.【解析】分析:(1)令已知的直線的解析式中x=0,可求出B點坐標,令y=0,可求出A點坐標;(2)根據(jù)A、B的坐標易得到M點坐標,若拋物線的頂點C在⊙M上,那么C點必為拋物線對稱軸與⊙O的交點;根據(jù)A、B的坐標可求出AB的長,進而可得到⊙M的半徑及C點的坐標,再用待定系數(shù)法求解即可;(3)在(2)中已經(jīng)求得了C點坐標,即可得到AC、BC的長;由圓周角定理:∠ACB=90°,所以此題可根據(jù)兩直角三角形的對應直角邊的不同來求出不同的P點坐標.本題解析:(1)對于直線,當時,;當時,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB為⊙M的直徑,∴點M為AB的中點,M(﹣4,﹣3),∵MC∥y軸,MC=5,∴C(﹣4,2),設拋物線的解析式為y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴拋物線的解析式為,即;(3)存在.當y=0時,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,設P(t,-6),∵∴=20,即||=1,當=-1,解得,,此時P點坐標為(﹣4+,-1)或(﹣4﹣,-1);當時,解得=﹣4+,=﹣4﹣;此時P點坐標為(﹣4+,1)或(﹣4﹣,1).綜上所述,P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.點睛:本題考查了二次函數(shù)的綜合應用及頂點式求二次函數(shù)的解析式和一元二次方程的解法,本題的綜合性較強,注意分類討論的思想應用.22、(1)見解析(2)A-國學誦讀(3)360人【解析】

(1)根據(jù)統(tǒng)計圖中C的人數(shù)和所占百分比可求出被調(diào)查的總人數(shù),進而求出活動B和D人數(shù),故可補全條形統(tǒng)計圖;(2)由條形統(tǒng)計圖知眾數(shù)為“A-國學誦讀”(3)先求出參加活動A的占比,再乘以全校人數(shù)即可.【詳解】(1)由題意可得,被調(diào)查的總人數(shù)為12÷20%=60,希望參加活動B的人數(shù)為60×15%=9,希望參加活動D的人數(shù)為60-27-9-12=12,故補全條形統(tǒng)計圖如下:(2)由條形統(tǒng)計圖知眾數(shù)為“A-國學誦讀”;(3)由題意得全校學生希望參加活動A的人數(shù)為800×=360(人)【點睛】此題主要考查統(tǒng)計圖的應用,解題的關鍵是根據(jù)題意求出調(diào)查的總人數(shù)再進行求解.23、(1)見解析;(2)的半徑是.【解析】

(1)連結,易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結.∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數(shù),相似三角形的判定與性質,等腰三角形的性質等知識,綜合程度較高,需要學生綜合運用知識的能力.24、答案見解析【解析】

首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關鍵..25、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數(shù)的40%,由此可得被抽查學生總人數(shù)為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數(shù)的12÷80×100%=15%,結合全校總人數(shù)為900可得900×15%=135(人),即全校“非常了解”“食品安全知識”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論