版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,已知AB∥CD∥EF,AC=4,CE=1,BD=3,則DF的值為()A. B. C. D.12.在平面直角坐標系中,將點向下平移個單位長度,所得到的點的坐標是()A. B.C. D.3.若拋物線y=x2+bx+c與x軸只有一個公共點,且過點A(m,n),B(m+8,n),則n=()A.0 B.3 C.16 D.94.方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.無實數(shù)根 D.只有一個實數(shù)根5.方程的兩根分別是,則等于()A.1 B.-1 C.3 D.-36.如圖,OA交⊙O于點B,AD切⊙O于點D,點C在⊙O上.若∠A=40°,則∠C為()A.20° B.25° C.30° D.35°7.如圖,∠1=∠2A.∠C=∠D B.∠B=∠AED8.如圖,在平面直角坐標系中,的頂點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應點的坐標是()A. B. C. D.9.下面的圖形是用數(shù)學家名字命名的,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.如圖,在□ABCD中,R為BC延長線上的點,連接AR交BD于點P,若CR:AD=2:3,則AP:PR的值為()A.3:5 B.2:3 C.3:4 D.3:211.如圖,,直線與這三條平行線分別交于點和點.已知AB=1,BC=3,DE=1.2,則DF的長為()A. B. C. D.12.關(guān)于的一元二次方程有兩個實數(shù)根,則的取值范圍是()A. B. C.且 D.且二、填空題(每題4分,共24分)13.如圖,△ABC內(nèi)接于⊙O,若∠A=α,則∠OBC=_____.14.在矩形中,點是邊上的一個動點,連接,過點作與點,交射線于點,連接,則的最小值是_____________15.如圖,原點O為平行四邊形A.BCD的對角線A.C的中點,頂點A,B,C,D的坐標分別為(4,2),(,b),(m,n),(-3,2).則(m+n)(+b)=__________.16.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.17.已知△ABC在坐標平面內(nèi)三頂點的坐標分別為A(0,2)、B(3,3)、C(2,1).以B為位似中心,畫出△A1B1C1與△ABC相似,兩三角形位于點B同側(cè)且相似比是3,則點C的對應頂點C1的坐標是_____.18.反比例函數(shù)的圖象上有一點P(2,n),將點P向右平移1個單位,再向下平移1個單位得到點Q,若點Q也在該函數(shù)的圖象上,則k=____________.三、解答題(共78分)19.(8分)如圖,在中,點在邊上,.點在邊上,.(1)求證:;(2)若,求的長.20.(8分)如圖,拋物線與軸交于、兩點,與軸交于點,且.(1)求拋物線的解析式及頂點的坐標;(2)判斷的形狀,證明你的結(jié)論;(3)點是拋物線對稱軸上的一個動點,當周長最小時,求點的坐標及的最小周長.21.(8分)如圖①,在直角坐標系中,點A的坐標為(1,0),以O(shè)A為邊在第一象限內(nèi)作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.(1)試找出圖1中的一個損矩形;(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標.22.(10分)如圖,中,.以點為圓心,為半徑作恰好經(jīng)過點.是否為的切線?請證明你的結(jié)論.為割線,.當時,求的長.23.(10分)在二次函數(shù)的學習中,教材有如下內(nèi)容:小聰和小明通過例題的學習,體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試利用圖象法探究方程的近似解,做法如下:請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).24.(10分)試證明:不論為何值,關(guān)于的方程總為一元二次方程.25.(12分)如圖,在正方形網(wǎng)格上有以及一條線段.請你以為一條邊.以正方形網(wǎng)格的格點為頂點畫一個,使得與相似,并求出這兩個三角形的相似比.26.如圖,是的弦,于,交于,若,求的半徑.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)平行線分線段成比例定理即可得出結(jié)論.【詳解】解:∵直線AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故選:C.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應線段成比例是解答此題的關(guān)鍵.2、B【解析】橫坐標,右移加,左移減;縱坐標,上移加,下移減可得所得到的點的坐標為(2,3-1),再解即可.【詳解】解:將點P向下平移1個單位長度所得到的點坐標為(2,3-1),即(2,2),故選:B.【點睛】此題主要考查了坐標與圖形的變化,關(guān)鍵是掌握點的坐標的變化規(guī)律.3、C【分析】根據(jù)點A、B的坐標易求該拋物線的對稱軸是x=m+1.故設(shè)拋物線解析式為y=(x+m+1)2,直接將A(m,n)代入,通過解方程來求n的值.【詳解】∵拋物線y=x2+bx+c過點A(m,n),B(m+8,n),∴對稱軸是x==m+1.又∵拋物線y=x2+bx+c與x軸只有一個交點,∴設(shè)拋物線解析式為y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故選:C.【點睛】本題考查了拋物線與x軸的交點.解答該題的技巧性在于找到拋物線的頂點坐標,根據(jù)頂點坐標設(shè)拋物線的解析式.4、C【分析】把a=1,b=-1,c=3代入△=b2-4ac進行計算,然后根據(jù)計算結(jié)果判斷方程根的情況.【詳解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程沒有實數(shù)根.故選C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.5、B【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,即可得到答案.【詳解】解:∵的兩根分別是,∴,故選:B.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握一元二次方程根與系數(shù)的關(guān)系進行解題.6、B【分析】根據(jù)切線的性質(zhì)得到∠ODA=90°,根據(jù)直角三角形的性質(zhì)求出∠DOA,根據(jù)圓周角定理計算即可.【詳解】解:∵切于點∴∴∵∴∴故選:B【點睛】本題考查了切線的性質(zhì):圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質(zhì),結(jié)合圖形認真推導即可得解.7、D【解析】求出∠DAE=∠BAC,根據(jù)選項條件判定三角形相似后,可得對應邊成比例,再把比例式化為等積式后即可判斷.【詳解】解:∵∠1=∠2,
∴∠1+∠BAE=∠2+∠BAE,
∴∠DAE=∠BAC,
A、∵∠DAE=∠BAC,∠D=∠C,
∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;
B、∵∠B=∠AED,∠DAE=∠BAC,
∴△ADE∽△ACB∴AEAB∴AB·故本選項錯誤;
C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;
D、∵∠DAE=∠BAC,AEAC=ADAB,
∴△∴ADAB∴AB·故本選項正確;
故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì)的應用,比例式化等積式,特別要注意確定好對應邊,不要找錯了.8、D【分析】過點作x軸的垂線,垂足為M,通過條件求出,MO的長即可得到的坐標.【詳解】解:過點作x軸的垂線,垂足為M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐標為.故選:D.【點睛】本題考查坐標與圖形變化-旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題.9、C【分析】根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,是中心對稱圖形,故此選項正確;D、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;故選:C.【點睛】此題主要考查了軸對稱圖形和中心對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、A【分析】證得△ADP∽△RBP,可得,由AD=BC,可得.【詳解】∵在?ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故選:A.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知相似三角形的對應線段成比例.11、B【分析】根據(jù)平行線分線段成比例定理即可解決問題.【詳解】解:,,即,,,故選.【點睛】本題考查平行線分線段成比例定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.12、D【解析】分析:根據(jù)一元二次方程根的判別式進行計算即可.詳解:根據(jù)一元二次方程一元二次方程有兩個實數(shù)根,解得:,根據(jù)二次項系數(shù)可得:故選D.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、90°﹣α.【分析】首先連接OC,由圓周角定理,可求得∠BOC的度數(shù),又由等腰三角形的性質(zhì),即可求得∠OBC的度數(shù).【詳解】連接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案為:.【點睛】此題考查了圓周角定理與等腰三角形的性質(zhì).此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.14、【分析】根據(jù)題意可點G在以AB為直徑的圓上,設(shè)圓心為H,當HGC在一條直線上時,CG的值最值,利用勾股定理求出CH的長,CG就能求出了.【詳解】解:點的運動軌跡為以為直徑的為圓心的圓弧。連結(jié)GH,CH,CG≥CH-GH,即CG=CH-GH時,也就是當三點共線時,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案為:【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形三邊的關(guān)系.CGH三點共線時CG最短是解決問題的關(guān)鍵.把動點轉(zhuǎn)化成了定點,問題就迎刃而解了..15、-6【分析】易知點A與點C關(guān)于原點O中心對稱,由平行四邊形的性質(zhì)可知點B和點D關(guān)于原點O對稱,根據(jù)關(guān)于原點對稱橫縱坐標都互為相反數(shù)可得點B、點C坐標,求解即可.【詳解】解:根據(jù)題意得點A與點C關(guān)于原點O中心對稱,點B和點D關(guān)于原點O對稱故答案為:【點睛】本題考查了平面直角坐標系中的中心對稱,正確理解題意是解題的關(guān)鍵.16、【分析】根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關(guān)鍵.17、(0,-3)【解析】根據(jù)把原三角形的三邊對應的縮小或放大一定的比例即可得到對應的相似圖形在改變的過程中保持形狀不變(大小可變)即可得出答案.【詳解】把原三角形的三邊對應的縮小或放大一定的比例即可得到對應的相似圖形,所畫圖形如圖所示,C1坐標為(0,-3).【點睛】本題考查了相似變換作圖的知識,注意圖形的相似變換不改變圖形中每一個角的大小;圖形中的每條線段都擴大(或縮小)相同的倍數(shù).18、1【分析】根據(jù)平移的特性寫出點Q的坐標,由點P、Q均在反比例函數(shù)的圖象上,即可得出k=2n=3(n﹣1),解出即可.【詳解】∵點P的坐標為(2,n),則點Q的坐標為(3,n﹣1),依題意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵:由P點坐標表示出Q點坐標.三、解答題(共78分)19、(1)證明見解析;(2).【分析】(1)先通過平角的度數(shù)為180°證明,再根據(jù)即可證明;(2)根據(jù)得出相似比,即可求出的長.【詳解】(1)證明:,又(2)【點睛】本題考查了相似三角形的問題,掌握相似三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.20、(1),D;(2)是直角三角形,見解析;(3),.【分析】(1)直接將(?1,0),代入解析式進而得出答案,再利用配方法求出函數(shù)頂點坐標;(2)分別求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進而利用勾股定理的逆定理得出即可;(3)利用軸對稱最短路線求法得出M點位置,求出直線的解析式,可得M點坐標,然后易求此時△ACM的周長.【詳解】解:(1)∵點在拋物線上,∴,解得:.∴拋物線的解析式為,∵,∴頂點的坐標為:;(2)是直角三角形,證明:當時,∴,即,當時,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如圖所示:BC與對稱軸交于點M,連接,根據(jù)軸對稱性及兩點之間線段最短可知,此時的值最小,即周長最小,設(shè)直線解析式為:,則,解得:,故直線的解析式為:,∵拋物線對稱軸為∴當時,,∴,最小周長是:.【點睛】此題主要考查了二次函數(shù)綜合應用、利用軸對稱求最短路線以及勾股定理的逆定理等知識,得出M點位置是解題關(guān)鍵.21、(1)詳見解析;(2)詳見解析;(3)N點的坐標為(0,﹣1);(4)D點坐標為(3,0).【解析】試題分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對角是直角的四邊形即可;(2)證明四邊形BADM四個頂點到BD的中點距離相等即可;(3)利用同弧所對的圓周角相等可得∠MAD=∠MBD,進而得到OA=ON,即可求得點N的坐標;(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.(1)四邊形ABMD為損矩形;(2)取BD中點H,連結(jié)MH,AH∵四邊形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴損矩形ABMD一定有外接圓(3)∵損矩形ABMD一定有外接圓⊙H∴MAD=MBD∵四邊形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N點的坐標為(0,-1)(4)延長AB交MG于點P,過點M作MQ⊥軸于點Q設(shè)MG=,則四邊形APMQ為正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四邊形DMGN為損矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D點坐標為(3,0).考點:本題考查的是確定圓的條件,正方形的性質(zhì)點評:解答本題的關(guān)鍵是理解損矩形的只有一組對角是直角的性質(zhì),22、(1)是的切線,理由詳見解析;(2)【分析】(1)根據(jù)題意連接,利用平行四邊形的判定與性質(zhì)進行分析證明即可;(2)由題意作于,連接,根據(jù)平行四邊形的性質(zhì)以及勾股定理進行分析求解.【詳解】解:是的切線.理由如下.連
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園園長個人工作計劃
- 中學生自我評價15篇
- 愛崗敬業(yè)演講稿范文集錦6篇
- 大一新生自我鑒定15篇
- 學期班務(wù)工作計劃
- 初中生新學期開學典禮演講稿合集6篇
- 大學課前三分鐘演講稿(合集15篇)
- 《廣告經(jīng)典案例》課件
- 幼兒園大班老師的綜合教育筆記合集6篇
- 金錢的詩句李白
- 酒店員工培訓方案(3篇)
- 2024年協(xié)會工作計劃范例(2篇)
- 內(nèi)蒙古自治區(qū)赤峰市2024-2025學年高三上學期11月期中物理試題(解析版)
- 廣州廣東廣州市海珠區(qū)瑞寶街招聘雇員9人筆試歷年參考題庫頻考點試題附帶答案詳解
- 國家開放大學電大臨床藥理學形考任務(wù)1-3參考答案
- 2024年人教版七年級下冊英語期末綜合檢測試卷及答案
- 2025年高中政治學業(yè)水平考試時政考點歸納總結(jié)(復習必背)
- 統(tǒng)編版(2024新版)七年級下冊道德與法治期末復習背誦知識點提綱
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳畫冊
- 老舊小區(qū)改造工程安全管理體系管理制度及措施
- 2024年山西省晉中市公開招聘警務(wù)輔助人員(輔警)筆試摸底測試(3)卷含答案
評論
0/150
提交評論