人教A版高中數(shù)學(必修第一冊)同步講義第37講 5.4.1正弦函數(shù)、余弦函數(shù)的圖象(教師版)_第1頁
人教A版高中數(shù)學(必修第一冊)同步講義第37講 5.4.1正弦函數(shù)、余弦函數(shù)的圖象(教師版)_第2頁
人教A版高中數(shù)學(必修第一冊)同步講義第37講 5.4.1正弦函數(shù)、余弦函數(shù)的圖象(教師版)_第3頁
人教A版高中數(shù)學(必修第一冊)同步講義第37講 5.4.1正弦函數(shù)、余弦函數(shù)的圖象(教師版)_第4頁
人教A版高中數(shù)學(必修第一冊)同步講義第37講 5.4.1正弦函數(shù)、余弦函數(shù)的圖象(教師版)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第05講5.4.1正弦函數(shù)、余弦函數(shù)的圖象課程標準學習目標①理解并掌握用單位圓作正弦函數(shù)以及作余弦函數(shù)的圖象的方法.掌握數(shù)形結(jié)合的優(yōu)勢。②通過兩類函數(shù)圖象認識函數(shù)圖象的特點,并能通過兩類圖象的形狀掌握兩類函數(shù)的性質(zhì)。會作正弦函數(shù)、余弦函數(shù)的圖象的同時,能認識圖象與三角函數(shù)的密切關(guān)系,并能解決與圖象有關(guān)的三角函數(shù)問題知識點01:正弦函數(shù)的圖象正弦函數(shù)SKIPIF1<0,SKIPIF1<0的圖象叫做正弦曲線.知識點02:正弦函數(shù)圖象的畫法(1)幾何法:①在單位圓上,將點SKIPIF1<0繞著點SKIPIF1<0旋轉(zhuǎn)SKIPIF1<0弧度至點SKIPIF1<0,根據(jù)正弦函數(shù)的定義,點SKIPIF1<0的縱坐標SKIPIF1<0.由此,以SKIPIF1<0為橫坐標,SKIPIF1<0為縱坐標畫點,即得到函數(shù)圖象上的點SKIPIF1<0.②將函數(shù)SKIPIF1<0,SKIPIF1<0的圖象不斷向左、向右平行移動(每次移動SKIPIF1<0個單位長度).(2)“五點法”:在函數(shù)SKIPIF1<0,SKIPIF1<0的圖象上,以下五個點:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在確定圖象形狀時起關(guān)鍵作用.描出這五個點,函數(shù)SKIPIF1<0,SKIPIF1<0的圖象形狀就基本確定了.因此,在精確度要求不高時,常先找出這五個關(guān)鍵點,再用光滑的曲線將它們連接起來,得到正弦函數(shù)的簡圖.【即學即練1】(2023春·陜西西安·高二西北工業(yè)大學附屬中學??茧A段練習)用五點法作出函數(shù)SKIPIF1<0的大致圖象.【答案】圖象見解析【詳解】解:因為SKIPIF1<0,列表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0描點、連線,函數(shù)圖象如下圖所示:知識點03:余弦函數(shù)的圖象余弦函數(shù)SKIPIF1<0,SKIPIF1<0的圖象叫做余弦曲線.知識點04:余弦函數(shù)圖象的畫法(1)要得到SKIPIF1<0,SKIPIF1<0的圖象,只需把SKIPIF1<0,SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度即可,這是因為SKIPIF1<0.(2)用“五點法”:畫余弦函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象時,所取的五個關(guān)鍵點分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0再用光滑的曲線連接起來.【即學即練1】(2023·全國·高三專題練習)作出函數(shù)SKIPIF1<0的圖象【答案】見解析【詳解】SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0圖象后,將SKIPIF1<0軸下方的部分沿SKIPIF1<0軸翻折到SKIPIF1<0軸上方,即為函數(shù)SKIPIF1<0的圖象,如圖

題型01用“五點法”作三角函數(shù)的圖象【典例1】(2023·全國·高三專題練習)用“五點法”在給定的坐標系中,畫出函數(shù)SKIPIF1<0在SKIPIF1<0上的大致圖像.

【答案】答案見解析【詳解】列表:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0120SKIPIF1<001描點,連線,畫出SKIPIF1<0在SKIPIF1<0上的大致圖像如圖:【典例2】(2023·全國·高一課堂例題)(1)作出函數(shù)SKIPIF1<0的簡圖;(2)作出函數(shù)SKIPIF1<0的簡圖.【答案】(1)答案見解析;(2)答案見解析【詳解】(1)列表:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0010SKIPIF1<00SKIPIF1<0020SKIPIF1<00描點并用光滑的曲線連接起來,可得函數(shù)SKIPIF1<0的圖象,如圖所示:

(2)列表:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<001SKIPIF1<001SKIPIF1<001210描點并用光滑的曲線連接起來,可得函數(shù)SKIPIF1<0的圖象,如圖所示:

【變式1】(2023春·北京·高一北京市第三十五中學??茧A段練習)用五點法畫出函數(shù)SKIPIF1<0一個周期的圖象.【答案】答案見解析【詳解】令SKIPIF1<0,則SKIPIF1<0.列表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象如下圖所示:【變式2】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0.在用“五點法”作函數(shù)SKIPIF1<0的圖象時,列表如下:SKIPIF1<0xSKIPIF1<0完成上述表格,并在坐標系中畫出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象;

【答案】填表見解析;作圖見解析【詳解】由題意列出以下表格:SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0x0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0020SKIPIF1<0SKIPIF1<0函數(shù)圖象如圖所示:

【變式3】(2023·全國·高一隨堂練習)用五點法分別畫下列函數(shù)在SKIPIF1<0上的圖象:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)見解析(2)見解析【詳解】解:xSKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0010-10SKIPIF1<032123

題型02利用圖象解三角不等式【典例1】(2023·全國·高一假期作業(yè))不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)圖象如下所示:

SKIPIF1<0SKIPIF1<0,SKIPIF1<0不等式的解集為:SKIPIF1<0.故選:SKIPIF1<0.【典例2】(2023秋·江西撫州·高二黎川縣第二中學校考開學考試)不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】畫出SKIPIF1<0時,SKIPIF1<0的圖象.

令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0又SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0.用SKIPIF1<0代替SKIPIF1<0解出SKIPIF1<0.可得SKIPIF1<0則SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·全國·高一假期作業(yè))不等式SKIPIF1<0SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】如圖所示,不等式SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0故選:A【變式2】(2023春·高一課時練習)在(0,2π)內(nèi)使sinx>|cosx|的x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為sinx>|cosx|且x∈(0,2π),所以sinx>0,所以x∈(0,π),在同一平面直角坐標系中畫出y=sinx,x∈(0,π)與y=|cosx|,x∈(0,π)的圖象,觀察圖象易得x∈SKIPIF1<0.故選:A.【變式3】(2023春·上海嘉定·高一校考期中)不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【分析】畫出SKIPIF1<0的圖象,由圖象即可求解.【詳解】

畫出SKIPIF1<0的圖象,如圖所示,由圖可知,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0題型03利用圖象求方程的解或函數(shù)零點的個數(shù)問題【典例1】(2023·全國·高一假期作業(yè))函數(shù)SKIPIF1<0的零點個數(shù)為.【答案】3【詳解】由SKIPIF1<0,則函數(shù)SKIPIF1<0零點個數(shù)為SKIPIF1<0圖象交點個數(shù),在同一坐標系中畫出兩函數(shù)圖象如下,則交點有3個,即SKIPIF1<0有3個零點.故答案為:3【典例2】(2023秋·河南新鄉(xiāng)·高一校聯(lián)考期末)已知函數(shù)SKIPIF1<0在SKIPIF1<0上恰有2個零點,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】由SKIPIF1<0且SKIPIF1<0,得SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上無零點,則SKIPIF1<0在SKIPIF1<0上恰有2個零點,則SKIPIF1<0,無解;若SKIPIF1<0在SKIPIF1<0上恰有1個零點,則SKIPIF1<0在SKIPIF1<0上恰有1個零點,則SKIPIF1<0,解得SKIPIF1<0;若SKIPIF1<0在SKIPIF1<0上恰有2個零點,則SKIPIF1<0在SKIPIF1<0上無零點,則SKIPIF1<0,無解,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023春·新疆塔城·高一塔城地區(qū)第一高級中學??茧A段練習)函數(shù)SKIPIF1<0的零點個數(shù)為.【答案】7【詳解】依題意求函數(shù)SKIPIF1<0的零點個數(shù),可以轉(zhuǎn)化為求函數(shù)SKIPIF1<0與SKIPIF1<0的交點個數(shù),SKIPIF1<0,如圖,對于函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;所以在SKIPIF1<0軸非負半軸上兩個函數(shù)圖像有4個交點,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;所以在SKIPIF1<0軸負半軸上兩個函數(shù)圖像有3個交點,

綜上,函數(shù)SKIPIF1<0的零點個數(shù)為7.故答案為:7.【典例4】(2023春·貴州遵義·高一統(tǒng)考期中)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有10個零點,則ω的取值范圍是.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,則SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有10個零點,所以由余弦函數(shù)的性質(zhì)可知:SKIPIF1<0解得SKIPIF1<0,故答案為:SKIPIF1<0.【典例5】(2023春·高一單元測試)方程SKIPIF1<0的解的個數(shù)是.【答案】7【詳解】由正弦函數(shù)值域可得SKIPIF1<0,又因為當SKIPIF1<0時,SKIPIF1<0;所以,分別畫出SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上的圖象如下圖所示:

根據(jù)圖像并根據(jù)其對稱性可知,在SKIPIF1<0上兩函數(shù)圖象共有7個交點;由函數(shù)與方程可知,方程SKIPIF1<0有7個解.故答案為:7【變式1】(2023·四川綿陽·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的零點個數(shù)為.【答案】2【詳解】令SKIPIF1<0,可得SKIPIF1<0,原題意等價于求SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上的交點個數(shù),∵SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,有余弦函數(shù)可知SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有2個交點所以SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有2個交點.故答案為:2.【變式2】(2023春·湖北武漢·高一華中科技大學附屬中學校聯(lián)考期中)已知函數(shù)SKIPIF1<0),若方程SKIPIF1<0在SKIPIF1<0上恰有5個實數(shù)解,則實數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】當SKIPIF1<0時,SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰好有5個x,使得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恰有5條對稱軸.令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恰有5條對稱軸,如圖:所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023春·江西南昌·高一??茧A段練習)已知函數(shù)SKIPIF1<0,若存在實數(shù)SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0互不相等SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0的圖象如下圖所示:存在實數(shù)SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0互不相等SKIPIF1<0,不妨設(shè)SKIPIF1<0,則由圖可知SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0;當SKIPIF1<0時,因為SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,故而SKIPIF1<0,SKIPIF1<0,且由圖可得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,綜上所述SKIPIF1<0;故答案為:SKIPIF1<0.【變式4】(2023春·四川廣安·高一??茧A段練習)已知關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,則m的取值范圍是.【答案】SKIPIF1<0【詳解】由題設(shè)SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0的圖象如下,只需SKIPIF1<0與SKIPIF1<0在給定區(qū)間內(nèi)有兩個交點即可,如圖,SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0【變式5】(2023秋·河北衡水·高二衡水市第二中學??茧A段練習)已知函數(shù)SKIPIF1<0,令SKIPIF1<0在區(qū)間SKIPIF1<0上恰有2個零點SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0SKIPIF1<0/0.75【詳解】由題意得SKIPIF1<0在SKIPIF1<0上恰有2個零點,即SKIPIF1<0在SKIPIF1<0上恰有2個零點SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,畫出SKIPIF1<0在SKIPIF1<0時的函數(shù)圖象,

SKIPIF1<0關(guān)于SKIPIF1<0對稱,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<0,SKIPIF1<0A夯實基礎(chǔ)B能力提升A夯實基礎(chǔ)1.(2023秋·高一課時練習)函數(shù)SKIPIF1<0的圖象中與y軸最近的最高點的坐標為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】用五點法畫出函數(shù)SKIPIF1<0的部分圖象如圖所示,由圖易知與y軸最近的最高點的坐標為SKIPIF1<0.

故選:B2.(2023·全國·高三專題練習)用“五點法”作SKIPIF1<0的圖象,首先描出的五個點的橫坐標是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由“五點法”作圖知:令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即為五個關(guān)鍵點的橫坐標.故選:B.3.(2023·全國·高三專題練習)三角函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖像為()A. B.C. D.【答案】C【詳解】解:∵SKIPIF1<0為奇函數(shù),∴SKIPIF1<0的圖像關(guān)于原點對稱,故排除A、D選項,三角函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,故排除B選項.故選:C.4.(2023·全國·高三專題練習)從函數(shù)SKIPIF1<0的圖象來看,當SKIPIF1<0時,對于SKIPIF1<0的x有(

)A.0個 B.1個 C.2個 D.3個【答案】C【詳解】先畫出SKIPIF1<0,SKIPIF1<0的圖象,即A與D之間的部分,再畫出SKIPIF1<0的圖象,如下圖:由圖象可知它們有2個交點B、C,所以當SKIPIF1<0時,SKIPIF1<0的x的值有2個.故選:C5.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0與SKIPIF1<0圖像交點的個數(shù)為(

)A.0 B.1 C.2 D.3【答案】C【詳解】作出函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象,并作出直線SKIPIF1<0,如圖:觀察圖形知:函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象與直線SKIPIF1<0有兩個公共點,所以函數(shù)SKIPIF1<0與SKIPIF1<0圖像交點的個數(shù)為2.故選:C6.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的簡圖是(

)A.B.C. D.【答案】B【詳解】由SKIPIF1<0知,其圖象和SKIPIF1<0的圖象相同,故選B.7.(2023秋·安徽合肥·高一校聯(lián)考期末)函數(shù)SKIPIF1<0,SKIPIF1<0的圖象在區(qū)間SKIPIF1<0的交點個數(shù)為(

)A.3 B.4 C.5 D.6【答案】A【詳解】分別作出SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象,如圖所示,

由圖象可知:SKIPIF1<0,SKIPIF1<0的圖象在區(qū)間SKIPIF1<0的交點個數(shù)為3.故選:A.8.(2023春·遼寧·高一鳳城市第一中學校聯(lián)考階段練習)華羅庚說:“數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔離分家萬事休.”所以研究函數(shù)時往往要作圖,那么函數(shù)SKIPIF1<0的部分圖像可能是(

)A.

B.

C.

D.

【答案】B【詳解】因為SKIPIF1<0,所以ACD錯誤.故選:B二、多選題9.(2023秋·高一課時練習)(多選)函數(shù)SKIPIF1<0與SKIPIF1<0有一個交點,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.0C.1 D.SKIPIF1<0【答案】BD【詳解】畫出SKIPIF1<0的圖象.如圖:直線SKIPIF1<0和SKIPIF1<0與SKIPIF1<0的圖象只有一個交點,

故SKIPIF1<0或SKIPIF1<0.故選:BD.10.(2023·全國·高一假期作業(yè))函數(shù)SKIPIF1<0,SKIPIF1<0的圖像與直線SKIPIF1<0(t為常數(shù),SKIPIF1<0)的交點可能有(

)A.0個 B.1個 C.2個 D.3個【答案】ABC【詳解】作出SKIPIF1<0,SKIPIF1<0的圖像觀察可知,

當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的圖像與直線SKIPIF1<0的交點個數(shù)為0;當SKIPIF1<0或SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的圖像與直線SKIPIF1<0的交點個數(shù)為l;當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的圖像與直線SKIPIF1<0的交點個數(shù)為2.故選:ABC.三、填空題11.(2023秋·湖南邵陽·高三湖南省邵東市第一中學??茧A段練習)若函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有3個零點,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,依題意,SKIPIF1<0在SKIPIF1<0上有且僅有3個零點,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.12.(2023春·上海嘉定·高一??计谥校┎坏仁絊KIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】

畫出SKIPIF1<0的圖象,如圖所示,由圖可知,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0四、解答題13.(2023·全國·高三專題練習)用“五點法”在給定的坐標系中,畫出函數(shù)SKIPIF1<0在SKIPIF1<0上的大致圖像.

【答案】答案見解析【詳解】列表:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0120SKIPIF1<001描點,連線,畫出SKIPIF1<0在SKIPIF1<0上的大致圖像如圖:14.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0,用五點作圖法畫出函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象;(先列表,再畫圖)【答案】答案見解析【詳解】SKIPIF1<0,按五個關(guān)鍵點列表:SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0010SKIPIF1<00SKIPIF1<003010描點并將它們用光滑的曲線連接起來如下圖所示:15.(2023·高一課時練習)作函數(shù)SKIPIF1<0的圖象.【答案】圖象見解析.【詳解】SKIPIF1<0SKIPIF1<0故SKIPIF1<0的圖象實際就是SKIPIF1<0的圖象在x軸下方的部分翻折到x軸上方后得到的圖象,如圖16.(2023秋·山東泰安·高一泰山中學校考期末)已知函數(shù)SKIPIF1<0(1)作出該函數(shù)的圖象;(2)若SKIPIF1<0,求SKIPIF1<0的值;(3)若SKIPIF1<0,討論方程SKIPIF1<0的解的個數(shù).【答案】(1)圖見解析;(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0;(3)當SKIPIF1<0或SKIPIF1<0時,解的個數(shù)為0;當SKIPIF1<0或SKIPIF1<0時,解的個數(shù)為1;當SKIPIF1<0時,解的個數(shù)為3.【詳解】(1)SKIPIF1<0的函數(shù)圖象如下:(2)當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,當SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論