2022年江蘇省句容市后白中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第1頁
2022年江蘇省句容市后白中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第2頁
2022年江蘇省句容市后白中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第3頁
2022年江蘇省句容市后白中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第4頁
2022年江蘇省句容市后白中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.?dāng)S一枚質(zhì)地均勻硬幣,前3次都是正面朝上,擲第4次時正面朝上的概率是()A.0 B. C. D.12.如圖,等腰直角三角形ABC的腰長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B和A→C的路徑向點B、C運動,設(shè)運動時間為x(單位:s),四邊形PBCQ的面積為y(單位:cm2),則y與x(0≤x≤4)之間的函數(shù)關(guān)系可用圖象表示為()A. B. C. D.3.如圖1是一只葡萄酒杯,酒杯的上半部分是以拋物線為模型設(shè)計而成,且成軸對稱圖形.從正面看葡萄酒杯的上半部分是一條拋物線,若,,以頂點為原點建立如圖2所示的平面直角坐標(biāo)系,則拋物線的表達式為()A. B. C. D.4.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()A. B. C. D.5.化簡的結(jié)果是()A.2 B.4 C.2 D.46.若反比例函數(shù)y=的圖象位于第二、四象限,則k的取值可以是()A.0 B.1 C.2 D.以上都不是7.正六邊形的周長為12,則它的面積為()A. B. C. D.8.如圖,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),與函數(shù)y=2x的圖象交于點A,則不等式0<kx+b<2x的解集為()A. B. C. D.9.如圖,函數(shù)與函數(shù)在同一坐標(biāo)系中的圖象如圖所示,則當(dāng)時().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x110.如圖,在中,點為邊中點,動點從點出發(fā),沿著的路徑以每秒1個單位長度的速度運動到點,在此過程中線段的長度隨著運動時間的函數(shù)關(guān)系如圖2所示,則的長為()A. B. C. D.11.如圖,在△ABO中,∠B=90o,OB=3,OA=5,以AO上一點P為圓心,PO長為半徑的圓恰好與AB相切于點C,則下列結(jié)論正確的是().A.⊙P的半徑為B.經(jīng)過A,O,B三點的拋物線的函數(shù)表達式是C.點(3,2)在經(jīng)過A,O,B三點的拋物線上D.經(jīng)過A,O,C三點的拋物線的函數(shù)表達式是12.如圖所示的兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是()A.點C B.點DC.線段BC的中點 D.線段FC的中點二、填空題(每題4分,共24分)13.兩幢大樓的部分截面及相關(guān)數(shù)據(jù)如圖,小明在甲樓A處透過窗戶E發(fā)現(xiàn)乙樓F處出現(xiàn)火災(zāi),此時A,E,F在同一直線上.跑到一樓時,消防員正在進行噴水滅火,水流路線呈拋物線,在1.2m高的D處噴出,水流正好經(jīng)過E,F.若點B和點E、點C和F的離地高度分別相同,現(xiàn)消防員將水流拋物線向上平移0.4m,再向左后退了____m,恰好把水噴到F處進行滅火.14.已知△ABC中,AB=5,sinB=,AC=4,則BC=_____.15.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是___________.16.如圖,平行四邊形中,,,,點E在AD上,且AE=4,點是AB上一點,連接EF,將線段EF繞點E逆時針旋轉(zhuǎn)120°得到EG,連接DG,則線段DG的最小值為____________________.17.關(guān)于x的一元二次方程沒有實數(shù)根,則實數(shù)a的取值范圍是.18.如圖,是的直徑,點、在上,連結(jié)、、、,若,,則的度數(shù)為________.三、解答題(共78分)19.(8分)如圖,中,,,為內(nèi)部一點,且.(1)求證:;(2)求證:.20.(8分)某公司研發(fā)了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調(diào)研發(fā)現(xiàn),在一段時間內(nèi),每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示:(1)根據(jù)圖象,直接寫出y與x的函數(shù)關(guān)系式;(2)該公司要想每天獲得3000元的銷售利潤,銷售單價應(yīng)定為多少元(3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?21.(8分)解方程:(x﹣2)(x﹣1)=3x﹣622.(10分)如圖,在中,弦垂直于直徑,垂足為,連結(jié),將沿翻轉(zhuǎn)得到,直線與直線相交于點.(1)求證:是的切線;(2)若為的中點,①求證:四邊形是菱形;②若,求的半徑長.23.(10分)一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,當(dāng)時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性(填“相同”或“不相同”);從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是;在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.24.(10分)如圖:在Rt△ABC中,∠C=90°,∠ABC=30°。延長CB至D,使DB=AB。連接AD.(1)求∠ADB的度數(shù).(2)根據(jù)圖形,不使用計算器和數(shù)學(xué)用表,請你求出tan75°的值.25.(12分)某種服裝,平均每天可以銷售20件,每件盈利44元,在每件降價幅度不超過10元的情況下,若每件降價1元,則每天可多售出5件,如果每天要盈利1600元,每件應(yīng)降價多少元?26.某商場經(jīng)銷一種高檔水果,原價每千克50元.(1)連續(xù)兩次降價后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,商場決定采取適當(dāng)?shù)臐q價措施,若每千克漲價1元,則日銷售量將減少20千克,那么每千克水果應(yīng)漲價多少元時,商場獲得的總利潤(元)最大,最大是多少元?

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用概率的意義直接得出答案.【詳解】連續(xù)拋擲一枚質(zhì)地均勻的硬幣4次,前3次的結(jié)果都是正面朝上,

他第4次拋擲這枚硬幣,正面朝上的概率為:.故選:B.【點睛】本題主要考查了概率的意義,正確把握概率的定義是解題關(guān)鍵.2、C【解析】先計算出四邊形PBCQ的面積,得到y(tǒng)與x的函數(shù)關(guān)系式,再根據(jù)函數(shù)解析式確定圖象即可.【詳解】由題意得:(0≤x≤4),可知,拋物線開口向下,關(guān)于y軸對稱,頂點為(0,8),故選:C.【點睛】此題考查二次函數(shù)的性質(zhì),根據(jù)題意列出解析式是解題的關(guān)鍵.3、A【分析】由題意可知C(0,0),且過點(2,3),設(shè)該拋物線的解析式為y=ax2,將兩點代入即可得出a的值,進一步得出解析式.【詳解】根據(jù)題意,得該拋物線的頂點坐標(biāo)為C(0,0),經(jīng)過點(2,3).設(shè)該拋物線的解析式為y=ax2.3=a22.a=.該拋物線的解析式為y=x2.故選A.【點睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)題意得出兩個坐標(biāo)是解題的關(guān)鍵.4、B【分析】易得此幾何體有三行,三列,判斷出各行各列最多有幾個正方體組成即可.【詳解】解:綜合主視圖與左視圖分析可知,第一行第1列最多有2個,第一行第2列最多有1個,第一行第3列最多有2個;第二行第1列最多有1個,第二行第2列最多有1個,第二行第3列最多有1個;第三行第1列最多有2個,第三行第2列最多有1個,第三行第3列最多有2個;所以最多有:2+1+2+1+1+1+2+1+2=13(個),故選B.【點睛】本題考查了幾何體三視圖,重點是考查學(xué)生的空間想象能力.掌握以下知識點:主視圖反映長和高,左視圖反映寬和高,俯視圖反映長和寬.5、A【解析】根據(jù)最簡二次根式的定義進行化簡即可.【詳解】故選:A.【點睛】本題考查二次根式的化簡,熟練掌握最簡二次根式的定義是關(guān)鍵.6、A【詳解】∵反比例函數(shù)y=的圖象位于第二、四象限,∴k﹣1<0,即k<1.故選A.7、D【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為12,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,

∴∠BOC=×360°=60°,

∵OB=OC,∴△OBC是等邊三角形,

∵正六邊形ABCDEF的周長為12,

∴BC=12÷6=2,

∴OB=BC=2,∴BM=BC=1,

∴OM==,

∴S△OBC=×BC×OM=×2×=,

∴該六邊形的面積為:×6=6.

故選:D.【點睛】此題考查了圓的內(nèi)接六邊形的性質(zhì)與等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.8、A【分析】先利用正比例函數(shù)解析式確定A點坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)x>1時,直線y=1x都在直線y=kx+b的上方,當(dāng)x<1時,直線y=kx+b在x軸上方,于是可得到不等式0<kx+b<1x的解集.【詳解】設(shè)A點坐標(biāo)為(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,則A點坐標(biāo)為(1,1),所以當(dāng)x>1時,1x>kx+b,∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(1,0),∴x<1時,kx+b>0,∴不等式0<kx+b<1x的解集為1<x<1.故選A.【點睛】本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.9、B【分析】根據(jù)題目中的函數(shù)解析式和圖象可以得到當(dāng)時的x的取值范圍,從而可以解答本題.【詳解】根據(jù)圖象可知,當(dāng)函數(shù)圖象在函數(shù)圖象上方即為,∴當(dāng)時,1x0或x1.故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于利用函數(shù)圖象解決問題.10、C【分析】根據(jù)圖象和圖形的對應(yīng)關(guān)系即可求出CD的長,從而求出AD和AC,然后根據(jù)圖象和圖形的對應(yīng)關(guān)系和垂線段最短即可求出CP⊥AB時AP的長,然后證出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【詳解】解:∵動點從點出發(fā),線段的長度為,運動時間為的,根據(jù)圖象可知,當(dāng)=0時,y=2∴CD=2∵點為邊中點,∴AD=CD=2,CA=2CD=4由圖象可知,當(dāng)運動時間x=時,y最小,即CP最小根據(jù)垂線段最短∴此時CP⊥AB,如下圖所示,此時點P運動的路程DA+AP=所以此時AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故選C.【點睛】此題考查的是根據(jù)函數(shù)圖象解決問題,掌握圖象和圖形的對應(yīng)關(guān)系、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.11、D【分析】A、連接PC,根據(jù)已知條件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得點B坐標(biāo),由A、B、O三點坐標(biāo),可求出拋物線的函數(shù)表達式;C、由射影定理及勾股定理可計算出點C坐標(biāo),將點C代入拋物線表達式即可判斷;D、由A,O,C三點坐標(biāo)可求得經(jīng)過A,O,C三點的拋物線的函數(shù)表達式.【詳解】解:如圖所示,連接PC,∵圓P與AB相切于點C,所以PC⊥AB,又∵∠B=90o,所以△ACP∽△ABO,設(shè)OP=x,則OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半徑為,故A選項錯誤;過B作BD⊥OA交OA于點D,∵∠B=90o,BD⊥OA,由勾股定理可得:,由面積相等可得:∴,∴由射影定理可得,∴∴,設(shè)經(jīng)過A,O,B三點的拋物線的函數(shù)表達式為;將A(5,0),O(0,0),代入上式可得:解得,,c=0,經(jīng)過A,O,B三點的拋物線的函數(shù)表達式為,故B選項錯誤;過點C作CE⊥OA交OA于點E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴點C坐標(biāo)為,故選項C錯誤;設(shè)經(jīng)過A,O,C三點的拋物線的函數(shù)表達式是,將A(5,0),O(0,0),代入得,解得:,∴經(jīng)過A,O,C三點的拋物線的函數(shù)表達式是,故選項D正確.【點睛】本題考查相似三角形、二次函數(shù)、圓等幾何知識,綜合性較強,解題的關(guān)鍵是要能靈活運用相似三角形的性質(zhì)計算.12、D【分析】直接利用中心對稱圖形的性質(zhì)得出答案.【詳解】解:兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是:線段FC的中點.故選:D.【點睛】本題比較容易,考查識別圖形的中心對稱性.要注意正確區(qū)分軸對稱圖形和中心對稱圖形,中心對稱是要尋找對稱中心,旋轉(zhuǎn)180度后重合.二、填空題(每題4分,共24分)13、【詳解】設(shè)直線AE的解析式為:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,∴x=25,∴F(25,6.2).設(shè)拋物線解析式為:y=ax2+bx+1.2,把E(20,9.2),F(25,6.2)代入得,,解之得:,∴y=-0.04x2+1.2x+1.2,設(shè)向上平移0.4m,向左后退了hm,恰好把水噴到F處進行滅火由題意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04×(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得:,(舍去).∴向后退了m故答案是:【點睛】本題考查了二次函數(shù)和一次函數(shù)的實際應(yīng)用,設(shè)直線AE的解析式為:y=kx+21.2.把E(20,9.2)代入求出直線解析式,從而求出點F的坐標(biāo).把E(20,9.2),F(25,6.2)代入y=ax2+bx+1.2求出二次函數(shù)解析式.設(shè)向左平移了hm,表示出平移后的解析式,把點F的坐標(biāo)代入可求出k的值.14、4+或4﹣【分析】根據(jù)題意畫出兩個圖形,過A作AD⊥BC于D,求出AD長,根據(jù)勾股定理求出BD、CD,即可求出BC.【詳解】有兩種情況:如圖1:過A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如圖2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.綜上所述,BC的長是4+或4﹣.故答案為:4+或4﹣.【點睛】本題考查了解直角三角形的問題,掌握銳角三角函數(shù)的定義以及勾股定理是解題的關(guān)鍵.15、(2,10)或(﹣2,0)【解析】∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉(zhuǎn),則點D′在x軸上,OD′=2,所以,D′(﹣2,0),②若逆時針旋轉(zhuǎn),則點D′到x軸的距離為10,到y(tǒng)軸的距離為2,所以,D′(2,10),綜上所述,點D′的坐標(biāo)為(2,10)或(﹣2,0).16、【分析】結(jié)合已知條件,作出輔助線,通過全等得出ME=GN,且隨著點F的移動,ME的長度不變,從而確定當(dāng)點N與點D重合時,使線段DG最?。驹斀狻拷猓喝鐖D所示,過點E做EM⊥AB交BA延長線于點M,過點G作GN⊥AD交AD于點N,∴∠EMF=∠GNE=90°∵四邊形ABCD是平行四邊形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG為EF逆時針旋轉(zhuǎn)120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF與△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴當(dāng)點N與點D重合時,使線段DG最小,如圖所示,此時,故答案為:.【點睛】本題考查了平行四邊形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的構(gòu)造、幾何中的動點問題,解題的關(guān)鍵是作出輔助線,得到全等三角形,并發(fā)現(xiàn)當(dāng)點N與點D重合時,使線段DG最?。?7、a>1.【解析】試題分析:∵方程沒有實數(shù)根,∴△=﹣4a<1,解得:a>1,故答案為a>1.考點:根的判別式.18、°【分析】先由直徑所對的圓周角為90°,可得:∠ADB=90°,根據(jù)同圓或等圓中,弦相等得到弧相等得到圓周角相等,得到∠A的度數(shù),根據(jù)直角三角形的性質(zhì)得到∠ABD的度數(shù),即可得出結(jié)論.【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案為:50°.【點睛】本題考查了圓周角定理,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,直徑所對的圓周角為90°.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析.【分析】(1)利用等腰三角形的性質(zhì)、三角形內(nèi)角和定理以及等式的性質(zhì)判斷出∠PBC=∠PAB,進而得出結(jié)論;

(2)由(1)的結(jié)論得出,進而得出,即可得出結(jié)論.【詳解】證明:(1)∵,,∴,又,∴,∴,又∵,∴;(2)∵,∴在中,,∴,∴,∴.【點睛】本題主要考查相似三角形的判定與性質(zhì)的知識點,熟練三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),三角形外角的性質(zhì),勾股定理等知識點,綜合性較強,有一定難度.20、(1)y=﹣2x+260;(2)銷售單價為80元;(3)銷售單價為90元時,每天獲得的利潤最大,最大利潤是3200元.【分析】(1)由待定系數(shù)法可得函數(shù)的解析式;

(2)根據(jù)利潤等于每件的利潤乘以銷售量,列方程可解;

(3)設(shè)每天獲得的利潤為w元,由題意得二次函數(shù),寫成頂點式,可求得答案.【詳解】(1)設(shè)y=kx+b(k≠0,b為常數(shù))將點(50,160),(80,100)代入得解得∴y與x的函數(shù)關(guān)系式為:y=﹣2x+260(2)由題意得:(x﹣50)(﹣2x+260)=3000化簡得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合題意,舍去)答:銷售單價為80元.(3)設(shè)每天獲得的利潤為w元,由題意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,拋物線開口向下∴w有最大值,當(dāng)x=90時,w最大值=3200答:銷售單價為90元時,每天獲得的利潤最大,最大利潤是3200元.【點睛】本題綜合考查了待定系數(shù)法求一次函數(shù)的解析式、一元二次方程的應(yīng)用、二次函數(shù)的應(yīng)用等知識點,難度中等略大.21、x=2或x=1【分析】將等式右邊進行提取公因數(shù)3,然后移項利用因式分解法求解可得.【詳解】解:∵(x﹣2)(x﹣1)﹣3(x﹣2)=0,∴(x﹣2)(x﹣1)=0,則x﹣2=0或x﹣1=0,解得x=2或x=1.故答案為:x=2或x=1.【點睛】本題考查了因式分解法.主要有提公因式法,運用公式法,分組分解法和十字相乘法.22、(1)見解析;(2)①見解析,②1【分析】(1)連接OC,由OA=OC得∠OAC=∠OCA,結(jié)合折疊的性質(zhì)得∠OCA=∠FAC,于是可判斷OC∥AF,然后根據(jù)切線的性質(zhì)得直線FC與⊙O相切;(2)①連接OD、BD,利用直角三角形斜邊上的中線的性質(zhì)可證得CB=OC=OD=BD,再根據(jù)菱形的判定定理即可判定;②首先證明△OBC是等邊三角形,在Rt△OCE中,根據(jù),構(gòu)建方程即可解決問題;【詳解】(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,由翻折的性質(zhì),有∠OAC=∠FAC,∠AEC=∠AFC=90°,∴∠FAC=∠OCA,∴∥AF,∴∠OCG=∠AFC=90°,故FG是⊙O的切線;(2)①如圖,連接OD、BD,∵CD垂直于直徑AB,∴OC=OD,BC=BD,又∵B為OG的中點,∴,∴CB=OB,又∵OB=OC,∴CB=OC,則有CB=OC=OD=BD,故四邊形OCBD是菱形;②由①知,△OBC是等邊三角形,∵CD垂直于直徑AB,∴,∴,設(shè)⊙O的半徑長為R,在Rt△OCE中,有,即,解之得:,⊙O的半徑長為:1.【點睛】本題屬于圓綜合題,考查了切線的判定,等邊三角形的判定和性質(zhì),直角三角形斜邊上的中線的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會利用方程的思想解決問題.23、(1)相同;(2)2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論