江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷含解析_第1頁
江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷含解析_第2頁
江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷含解析_第3頁
江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷含解析_第4頁
江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省淮安市金湖縣2023-2024學年中考數(shù)學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)2.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.123.加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數(shù)關系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘4.如圖,圓O是等邊三角形內切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°5.計算(ab2)3的結果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b66.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.7.計算1+2+22+23+…+22010的結果是()A.22011–1 B.22011+1C. D.8.已知二次函數(shù)y=a(x﹣2)2+c,當x=x1時,函數(shù)值為y1;當x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(chǎn)(y1﹣y2)>0 D.a(chǎn)(y1+y2)>09.如圖,△ABC內接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.10.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發(fā),沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.12.函數(shù)y=1x-1的自變量x的取值范圍是13.已知一組數(shù)據(jù),,,,的平均數(shù)是,那么這組數(shù)據(jù)的方差等于________.14.分式方程-1=的解是x=________.15.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.16.計算:2a×(﹣2b)=_____.17.使有意義的x的取值范圍是______.三、解答題(共7小題,滿分69分)18.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(保持點P在△ABC內部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉到點A、P、Q在同一直線時,求AP的長;設射線AP與射線BQ相交于點E,連接EC,寫出旋轉過程中EP、EQ、EC之間的數(shù)量關系.19.(5分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.20.(8分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?21.(10分)為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?22.(10分)解不等式組,并將它的解集在數(shù)軸上表示出來.23.(12分)如圖,用細線懸掛一個小球,小球在豎直平面內的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)24.(14分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).2、D【解析】

根據(jù)正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.3、C【解析】

根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數(shù)的應用,熟練掌握性質是解題的關鍵.4、D【解析】

由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).5、D【解析】試題分析:根據(jù)積的乘方的性質進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.6、D【解析】

解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數(shù)為2,1,符合題意,選項D的左視圖從左往右正方形個數(shù)為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.7、A【解析】

可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關鍵.8、C【解析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對稱性確定出y1與y2的大小關系,然后對各選項分析判斷即可得解.【詳解】解:①a>1時,二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,②a<1時,二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,綜上所述,表達式正確的是a(y1﹣y2)>1.故選:C.【點睛】本題主要考查二次函數(shù)的性質,利用了二次函數(shù)的對稱性,關鍵要掌握根據(jù)二次項系數(shù)a的正負分情況討論.9、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.10、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關鍵是掌握整體代入法.二、填空題(共7小題,每小題3分,滿分21分)11、2.4cm【解析】分析:根據(jù)圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數(shù)圖象,勾股定理,銳角三角函數(shù)等知識,解答本題的關鍵是根據(jù)圖形得到AC、BC的長度,此題難度一般.12、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>113、5.2【解析】分析:首先根據(jù)平均數(shù)求出x的值,然后根據(jù)方差的計算法則進行計算即可得出答案.詳解:∵平均數(shù)為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點睛:本題主要考查的是平均數(shù)和方差的計算法則,屬于基礎題型.明確計算公式是解決這個問題的關鍵.14、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.15、3【解析】

作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.16、﹣4ab【解析】

根據(jù)單項式與單項式的乘法解答即可.【詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【點睛】本題考查了單項式的乘法,關鍵是根據(jù)單項式的乘法法則解答.17、【解析】二次根式有意義的條件.【分析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點睛】本題考查幾何變換綜合題,解答關鍵是等腰直角三角形的性質,全等三角形的性質和判定,添加恰當輔助線構造全等三角形.19、【思考】h1+h1=h;【探究】h1-h(huán)1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解析】

思考:根據(jù)等腰三角形的性質,把代數(shù)式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【詳解】思考即h1+h1=h.探究h1-h(huán)1=h.理由.連接,∵∴∴h1-h(huán)1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h(huán)1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【點睛】本題結合三角形的面積和等腰三角形的性質考查了新性質的推理與證明,熟練掌握三角形的性質,結合圖形層層推進是解答的關鍵.20、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】

(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調查的總家庭數(shù);(2)用抽查的總人數(shù)乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數(shù),再用總人數(shù)減去其它家庭數(shù),求出學習2-2.5小時的家庭數(shù),從而補全統(tǒng)計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學習時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數(shù)有:200×=60(個),學習2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學習時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應的扇形圓心角的度數(shù)與360°的比.21、(1)購買A型學習用品400件,B型學習用品600件.(2)最多購買B型學習用品1件【解析】

(1)設購買A型學習用品x件,B型學習用品y件,就有x+y=1000,20x+30y=26000,由這兩個方程構成方程組求出其解就可以得出結論.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,根據(jù)這批學習用品的錢不超過210元建立不等式求出其解即可.【詳解】解:(1)設購買A型學習用品x件,B型學習用品y件,由題意,得,解得:.答:購買A型學習用品400件,B型學習用品600件.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,由題意,得20(1000﹣a)+30a≤210,解得:a≤1.答:最多購買

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論