2023屆山東省青島市西海岸新區(qū)數學九年級第一學期期末綜合測試試題含解析_第1頁
2023屆山東省青島市西海岸新區(qū)數學九年級第一學期期末綜合測試試題含解析_第2頁
2023屆山東省青島市西海岸新區(qū)數學九年級第一學期期末綜合測試試題含解析_第3頁
2023屆山東省青島市西海岸新區(qū)數學九年級第一學期期末綜合測試試題含解析_第4頁
2023屆山東省青島市西海岸新區(qū)數學九年級第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在半徑為的中,弦與交于點,,,則的長是()A. B. C. D.2.下列事件是必然事件的是()A.明天太陽從西方升起B(yǎng).打開電視機,正在播放廣告C.擲一枚硬幣,正面朝上D.任意一個三角形,它的內角和等于180°3.在平面直角坐標系xoy中,△OAB各頂點的坐標分別為:O(0,0),A(1,2),B(3,0),以原點O為位似中心,相似比為2,將△OAB放大,若B點的對應點B′的坐標為(﹣6,0),則A點的對應點A′坐標為()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)4.不解方程,則一元二次方程的根的情況是()A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.以上都不對5.如圖,△ABC內接于⊙O,AB=BC,∠ABC=120°,⊙O的直徑AD=6,則BD的長為()A.2 B.3 C.2 D.36.如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動點P從點A開始沿邊AB向B以1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以2cm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),那么經過()秒,四邊形APQC的面積最?。瓵.1 B.2 C.3 D.47.一元二次方程的常數項是()A. B. C. D.8.如圖,雙曲線的一個分支為()A.① B.② C.③ D.④9.如圖,正方形的邊長為4,點在的邊上,且,與關于所在的直線對稱,將按順時針方向繞點旋轉得到,連接,則線段的長為()A.4 B. C.5 D.610.已知,如圖,點C,D在⊙O上,直徑AB=6cm,弦AC,BD相交于點E,若CE=BC,則陰影部分面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.某班級中有男生和女生各若干,如果隨機抽取1人,抽到男生的概率是,那么抽到女生的概率是_____.12.如圖,反比例函數的圖象與矩形相較于兩點,若是的中點,,則反比例函數的表達式為__________.13.如圖,D是反比例函數(k<0)的圖象上一點,過D作DE⊥x軸于E,DC⊥y軸于C,一次函數y=﹣x+m與的圖象都經過點C,與x軸分別交于A、B兩點,四邊形DCAE的面積為4,則k的值為_______.14.點在拋物線上,則__________.(填“>”,“<”或“=”).15.等邊三角形中,,將繞的中點逆時針旋轉,得到,其中點的運動路徑為,則圖中陰影部分的面積為__________.16.為了加強視力保護意識,小明要在書房里掛一張視力表.由于書房空間狹小,他想根據測試距離為的大視力表制作一個測試距離為的小視力表.如圖,如果大視力表中“”的高度是,那么小視力表中相應“”的高度是__________.17.如圖,在四邊形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,則四邊形ABCD的面積為__.18.圓錐的母線長是5cm,底面半徑長是3cm,它的側面展開圖的圓心角是____.三、解答題(共66分)19.(10分)解下列方程:(1)(2)20.(6分)定義:二元一次不等式是指含有兩個未知數(即二元),并且未知數的次數是1次(即一次)的不等式;滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序實數對可以看成直角坐標平面內點的坐標.于是二元一次不等式(組)的解集就可以看成直角坐標系內的點構成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四個點,請在直角坐標系中標出這四個點,這四個點中是x﹣y﹣2≤0的解的點是.(2)設的解集在坐標系內所對應的點形成的圖形為G.①求G的面積;②P(x,y)為G內(含邊界)的一點,求3x+2y的取值范圍;(3)設的解集圍成的圖形為M,直接寫出拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點時m的取值范圍.21.(6分)如圖,在中,AC=4,CD=2,BC=8,點D在BC邊上,(1)判斷與是否相似?請說明理由.(2)當AD=3時,求AB的長22.(8分)臺州人民翹首以盼的樂清灣大橋于2018年9月28日正式通車,經統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數,當橋上的車流密度達到220輛/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米,車流速度為80千米/小時,研究證明:當時,車流速度是車流密度的一次函數.(1)求大橋上車流密度為50/輛千米時的車流速度;(2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應把大橋上的車流密度控制在什么范圍內?(3)車流量(輛/小時)是單位時間內通過橋上某觀測點的車輛數,即:車流量車流速度車流密度,求大橋上車流量的最大值.23.(8分)如圖,已知反比例函數(k1>0)與一次函數相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.(1)求出反比例函數與一次函數的解析式;(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數y1的值大于一次函數y2的值.24.(8分)關于的一元二次方程有兩個實數根,求的取值范圍.25.(10分)甲、乙兩人在玩轉盤游戲時,把兩個可以自由轉動的轉盤A、B分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內標上數字(如圖所示),指針的位置固定.游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區(qū)域的數字之和為3的倍數,甲勝;若指針所指兩個區(qū)域的數字之和為4的倍數時,乙勝.如果指針落在分割線上,則需要重新轉動轉盤.(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.26.(10分)如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸、垂足為點,反比例函數的圖象經過的中點、且與相交于點.經過、兩點的一次函數解析式為,若點的坐標為,.且.(1)求反比例函數的解析式;(2)在直線上有一點,的面積等于.求滿足條件的點的坐標;(3)請觀察圖象直接寫出不等式的解集.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】過點作于點,于,連接,由垂徑定理得出,得出,由勾股定理得出,證出是等腰直角三角形,得出,求出,由直角三角形的性質得出,由勾股定理得出,即可得出答案.【詳解】解:過點作于點,于,連接,如圖所示:則,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故選C.【點睛】考核知識點:垂徑定理.利用垂徑定理和勾股定理解決問題是關鍵.2、D【分析】必然事件就是一定會發(fā)生的事件,依次判斷即可.【詳解】A、明天太陽從西方升起,是不可能事件,故不符合題意;B、打開電視機,正在播放廣告是隨機事件,故不符合題意;C、擲一枚硬幣,正面朝上是隨機事件,故不符合題意;D、任意一個三角形,它的內角和等于180°是必然事件,故符合題意;故選:D.【點睛】本題是對必然事件的考查,熟練掌握必然事件知識是解決本題的關鍵.3、A【分析】根據相似比為2,B′的坐標為(﹣6,0),判斷A′在第三象限即可解題.【詳解】解:由題可知OA′:OA=2:1,∵B′的坐標為(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故選A.【點睛】本題考查了圖形的位似,屬于簡單題,確定A′的象限是解題關鍵.4、C【分析】根據?值判斷根的情況【詳解】解:a=2b=3c=-4∴有兩個不相等的實數根故本題答案為:C【點睛】本題考查了通過根的判別式判斷根的情況,注意a,b,c有符號5、D【分析】連接OB,如圖,利用弧、弦和圓心角的關系得到,則利用垂徑定理得到OB⊥AC,所以∠ABO=∠ABC=60°,則∠OAB=60°,再根據圓周角定理得到∠ABD=90°,然后利用含30度的直角三角形三邊的關系計算BD的長.【詳解】連接OB,如圖:

∵AB=BC,

∴,

∴OB⊥AC,

∴OB平分∠ABC,

∴∠ABO=∠ABC=×120°=60°,

∵OA=OB,

∴∠OAB=60°,

∵AD為直徑,

∴∠ABD=90°,

在Rt△ABD中,AB=AD=3,

∴BD=.故選D.【點睛】考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了垂徑定理和圓周角定理.6、C【分析】根據等量關系“四邊形APQC的面積=三角形ABC的面積-三角形PBQ的面積”列出函數關系求最小值.【詳解】解:設P、Q同時出發(fā)后經過的時間為ts,四邊形APQC的面積為Scm2,則有:S=S△ABC-S△PBQ=×12×6-(6-t)×2t=t2-6t+36=(t-3)2+1.∴當t=3s時,S取得最小值.故選C.【點睛】本題考查了函數關系式的求法以及最值的求法,解題的關鍵是根據題意列出函數關系式,并根據二次函數的性質求出最值.7、A【分析】在一元二次方程的一般形式下,可得出一元二次方程的常數項.【詳解】解:由,所以方程的常數項是故選A.【點睛】本題考查的是一元二次方程的一般形式及各項系數,掌握以上知識是解題的關鍵.8、D【解析】∵在中,k=8>0,∴它的兩個分支分別位于第一、三象限,排除①②;又當=2時,=4,排除③;所以應該是④.故選D.9、C【分析】如圖,連接BE,根據軸對稱的性質得到AF=AD,∠EAD=∠EAF,根據旋轉的性質得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據全等三角形的性質得到FG=BE,根據正方形的性質得到BC=CD=AB=1.根據勾股定理即可得到結論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.【點睛】本題考查了正方形的性質,勾股定理,全等三角形的判定與性質以及旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.10、B【分析】連接OD、OC,根據CE=BC,得出∠DBC=∠CEB=45°,進而得出∠DOC=90°,根據S陰影=S扇形-S△ODC即可求得.【詳解】連接OD、OC,∵AB是直徑,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S陰影=S扇形?S△ODC=?×3×3=?.故答案選B.【點睛】本題考查的知識點是扇形面積的計算,解題的關鍵是熟練的掌握扇形面積的計算.二、填空題(每小題3分,共24分)11、【分析】由于抽到男生的概率與抽到女生的概率之和為1,據此即可求出抽到女生的概率.【詳解】解:∵抽到男生的概率是,∴抽到女生的概率是1-=.故答案為:.【點睛】此題考查的是求概率問題,掌握抽到男生和抽到女生的概率之和等于1是解決此題的關鍵.12、【分析】設D(a,),則B縱坐標也為,代入反比例函數的y=,即可求得E的橫坐標,則根據三角形的面積公式即可求得k的值.【詳解】解:設D(a,),則B縱坐標也為,∵D是AB中點,∴點E橫坐標為2a,代入解析式得到縱坐標:,∵BE=BCEC=,∴E為BC的中點,S△BDE=,∴k=1.∴反比例函數的表達式為;故答案是:.【點睛】本題考查了反比例函數的性質,以及三角形的面積公式,正確表示出BE的長度是關鍵.13、-1【詳解】解:∵的圖象經過點C,∴C(0,1),將點C代入一次函數y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四邊形DCAE的面積為4,∴S矩形OCDE=4-1=1,∴k=-1故答案為:-1.14、>【分析】把A、B兩點的坐標代入拋物線的解析式,求出的值即得答案.【詳解】解:把A、B兩點的坐標代入拋物線的解析式,得:,,∴>.故答案為:>.【點睛】本題考查了二次函數的性質和二次函數圖象上點的坐標特征,屬于基本題型,掌握比較的方法是解答關鍵.15、【分析】先利用勾股定理求出OB,再根據,計算即可.【詳解】解:在等邊三角形中,O為的中點,∴OB⊥OC,,∴∠BOC=90°∴∵將繞的中點逆時針旋轉,得到∴∴三點共線∴故答案為:【點睛】本題考查旋轉變換、扇形面積公式,三角形的面積公式,以及勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.16、【分析】先利用平行線證明相似,再利用相似三角形的性質得到比例式,即可計算出結果.【詳解】解:如圖,

由題意得:CD∥AB,

∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,

故答案是:2.1cm.【點睛】本題考查了相似三角形的應用,比較簡單;根據生活常識,墻與地面垂直,則兩張視力表平行,根據平行得到相似列出比例式,可以計算出結果.17、16【分析】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,證明△CDA≌△CBE,根據全等三角形的性質得到CA=CE,∠BCE=∠DCA,得到△CAE為等邊三角形,根據等邊三角形的性質計算,得到答案.【詳解】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE為等邊三角形,∴AE=AC=8,CF=AC=4,則四邊形ABCD的面積=△CAB的面積=×8×4=16,故答案為:16.【點睛】考核知識點:等邊三角形判定和性質,三角函數.作輔助線,構造直角三角形是關鍵.18、216°.【詳解】圓錐的底面周長為2π×3=6π(cm),設圓錐側面展開圖的圓心角是n°,則=6π,解得n=216.故答案為216°.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.三、解答題(共66分)19、【分析】(1)利用配方法得到(x﹣1)2=3,然后利用直接開平方法解方程;(2)先變形得到(2x﹣1)2﹣2(2x﹣1)=0,然后利用因式分解法解方程.【詳解】解:(1)x2﹣2x+1=3,(x﹣1)2=3,x﹣1=±,所以,(2)(2x﹣1)2﹣2(2x﹣1)=0,(2x﹣1)(2x﹣1﹣2)=0,2x﹣1=0或2x﹣1﹣2=0,所以x1=,x2=.【點睛】本題考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法.20、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐標系描出A、B、C、D四點,觀察圖形即可得出結論(2)①分別畫出直線y=2x+2、y=-x-2、y=-2得出圖形為G,從而求出G的面積;②根據P(x,y)為G內(含邊界)的一點,求出x、y的范圍,從而2x+2y的取值范圍;(2)分別畫出直線y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所圍成的圖形M,再根據拋物線的對稱軸x=﹣m,和拋物線y=x2+2mx+2m2﹣m﹣2與圖形M有交點,從而求出m的取值范圍【詳解】解:(2)如圖所示:這四個點中是x﹣y﹣2≤0的解的點是A、B、D.故答案為:A、B、D;(2)①如圖所示:不等式組在坐標系內形成的圖形為G,所以G的面積為:×2×2=2.②根據圖象得:﹣2≤x≤2,﹣2≤y≤﹣2,∴﹣6≤2x≤2,﹣6≤2y≤﹣2,∴﹣22≤2x+2y≤2.答:2x+2y的取值范圍為﹣22≤2x+2y≤2.(2)如圖所示為不等式組的解集圍成的圖形,設為M,拋物線y=x2+2mx+2m2﹣m﹣2與圖形M有交點時m的取值范圍:∵拋物線的對稱軸x=﹣m,﹣m≥﹣,或﹣m≤,∴m或m≥﹣.又﹣2≤2m2﹣m﹣2≤2,∴0≤m≤,綜上:m的取值范圍是0≤m≤【點睛】本題考查了二次函數的綜合題,涉及到了一次函數與方程、一次函數與不等式、二次函數與不等式等知識,熟練掌握相關知識是解題的關鍵21、(1),見解析;(2)【分析】(1)由可得以及∠C=∠C可證;(2)由可得,即可求出AB的長.【詳解】解:(1)理由如下:∵AC=4,CD=2,BC=8,∴,∴,又∵∠C=∠C,∴,(2)∵,∴,∴;【點睛】本題考查了相似三角形的判定及運用,掌握相似三角形的判定及運用是解題的關鍵.22、(1)車流速度68千米/小時;(2)應把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)車流量y取得最大值是每小時4840輛【分析】(1)設車流速度與車流密度的函數關系式為v=kx+b,列式求出函數解析式,將x=50代入即可得到答案;(2)根據題意列不等式組即可得到答案;(3)分兩種情況:、時分別求出y的最大值即可.【詳解】(1)設車流速度與車流密度的函數關系式為v=kx+b,由題意,得,解得,∴當時,車流速度是車流密度的一次函數為,當x=50時,(千米/小時),∴大橋上車流密度為50/輛千米時的車流速度68千米/小時;(2)由題意得,解得20<x<70,符合題意,∴為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)由題意得y=vx,當時,y=80x,∵k=80>0,∴y隨x的增大而增大,∴當x=20時,y有最大值1600,當時,y,當x=110時,y有最大值4840,∵4840>1600,∴當車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.【點睛】此題考查待定系數法求一次函數的解析式,一元一次不等式組的實際應用,二次函數最大值的確定,正確掌握各知識點并熟練解題是關鍵.23、(1);;(2)B點的坐標為(-2,-1);當0<x<1和x<-2時,y1>y2.【分析】(1)根據tan∠AOC==2,△OAC的面積為1,確定點A的坐標,把點A的坐標分別代入兩個解析式即可求解;(2)根據兩個解析式求得交點B的坐標,觀察圖象,得到當x為何值時,反比例函數y1的值大于一次函數y2的值.【詳解】解:(1)在Rt△OAC中,設OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1(負值舍去).∴A點的坐標為(1,2).把A點的坐標代入中,得k1=2.∴反比例函數的表達式為.把A點的坐標代入中,得k2+1=2,∴k2=1.∴一次函數的表達式.(2)B點的坐標為(-2,-1).當0<x<1和x<-2時,y1>y2.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論