2023屆重慶市北碚區(qū)西南大附中九年級數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
2023屆重慶市北碚區(qū)西南大附中九年級數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
2023屆重慶市北碚區(qū)西南大附中九年級數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
2023屆重慶市北碚區(qū)西南大附中九年級數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
2023屆重慶市北碚區(qū)西南大附中九年級數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.二次函數(shù)的圖象與軸有且只有一個交點,則的值為()A.1或-3 B.5或-3 C.-5或3 D.-1或32.一根水平放置的圓柱形輸水管橫截面積如圖所示,其中有水部分水面寬8米,最深處水深2米,則此輸水管道的半徑是()A.4米 B.5米 C.6米 D.8米3.已知二次函數(shù)y=x2+mx+n的圖像經(jīng)過點(―1,―3),則代數(shù)式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值34.如圖,在△ABC中,∠BAC=90°,AB=AC=4,以點C為中心,把△ABC逆時針旋轉(zhuǎn)45°,得到△A′B′C,則圖中陰影部分的面積為()A.2 B.2π C.4 D.4π5.一個不透明的盒子中放入四張卡片,每張卡片上都寫有一個數(shù)字,分別是﹣2,﹣1,0,1.卡片除數(shù)字不同外其它均相同,從中隨機抽取兩張卡片,抽取的兩張卡片上數(shù)字之積為負數(shù)的概率是()A. B. C. D.6.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個7.我們定義一種新函數(shù):形如(a≠0,b2﹣4ac>0)的函數(shù)叫做“鵲橋”函數(shù).小麗同學畫出了“鵲橋”函數(shù)y=|x2﹣2x﹣3|的圖象(如圖所示),并寫出下列五個結(jié)論:其中正確結(jié)論的個數(shù)是()①圖象與坐標軸的交點為(﹣1,0),(3,0)和(0,3);②圖象具有對稱性,對稱軸是直線x=1;③當﹣1≤x≤1或x≥3時,函數(shù)值y隨x值的增大而增大;④當x=﹣1或x=3時,函數(shù)的最小值是0;⑤當x=1時,函數(shù)的最大值是4,A.4 B.3 C.2 D.18.已知兩個相似三角形的面積比為4:9,則周長的比為()A.2:3 B.4:9C.3:2 D.9.sin45°的值是()A. B. C. D.10.中,,,,的值為()A. B. C. D.2二、填空題(每小題3分,共24分)11.同時拋擲兩枚質(zhì)地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.12.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.13.若能分解成兩個一次因式的積,則整數(shù)k=_________.14.如圖,⊙O直徑CD=20,AB是⊙O的弦,AB⊥CD,垂足為M,若OM:OC=3:5,則弦AB的長為______.15.如圖,由四個全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則cosα=_____.16.如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.17.如圖,在△ABC中,P是AB邊上的點,請補充一個條件,使△ACP∽△ABC,這個條件可以是:___(寫出一個即可),18.如圖,拋物線和拋物線的頂點分別為點M和點N,線段MN經(jīng)過平移得到線段PQ,若點Q的橫坐標是3,則點P的坐標是__________,MN平移到PQ掃過的陰影部分的面積是__________.三、解答題(共66分)19.(10分)如圖,已知的三個頂點的坐標分別為、、,P(a,b)是△ABC的邊AC上一點:(1)將繞原點逆時針旋轉(zhuǎn)90°得到,請在網(wǎng)格中畫出,旋轉(zhuǎn)過程中點A所走的路徑長為.(2)將△ABC沿一定的方向平移后,點P的對應(yīng)點為P2(a+6,b+2),請在網(wǎng)格畫出上述平移后的△A2B2C2,并寫出點A2、的坐標:A2().(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應(yīng)的點P3位似坐標為(直接寫出結(jié)果).20.(6分)交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米小時)指通過道路指定斷面的車輛速度,密度(輛千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關(guān)系的部分數(shù)據(jù)如下表:速度v(千米/小時)流量q(輛/小時)(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫,關(guān)系最準確是_____________________.(只填上正確答案的序號)①;②;③(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?(3)已知,,滿足,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:市交通運行監(jiān)控平臺顯示,當時道路出現(xiàn)輕度擁堵.試分析當車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵?21.(6分)計算:2cos60°+4sin60°?tan30°﹣cos45°22.(8分)如圖,拋物線y=ax2+5ax+c(a<0)與x軸負半軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點,D是拋物線的頂點,過D作DH⊥x軸于點H,延長DH交AC于點E,且S△ABD:S△ACB=9:16,(1)求A、B兩點的坐標;(2)若△DBH與△BEH相似,試求拋物線的解析式.23.(8分)如圖,AG是∠PAQ的平分線,點E在AQ上,以AE為直徑的⊙0交AG于點D,過點D作AP的垂線,垂足為點C,交AQ于點B.(1)求證:直線BC是⊙O的切線;(2)若⊙O的半徑為6,AC=2CD,求BD的長24.(8分)解不等式組并求出最大整數(shù)解.25.(10分)如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)26.(10分)如圖,在菱形中,點在對角線上,延長交于點.(1)求證:;(2)已知點在邊上,請以為邊,用尺規(guī)作一個與相似,并使得點在上.(只須作出一個,保留作圖痕跡,不寫作法)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點,可知△=0,繼而求得答案.【詳解】解:∵二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值為5或-1.故選:B.【點睛】此題考查了拋物線與x軸的交點問題,注意掌握二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△>0時,拋物線與x軸有2個交點;△=0時,拋物線與x軸有1個交點;△<0時,拋物線與x軸沒有交點.2、B【詳解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,設(shè)輸水管的半徑是r,則OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故選B.【點睛】本題考查垂徑定理的應(yīng)用;勾股定理.3、A【解析】把點(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1進行配方即可.【詳解】∵二次函數(shù)y=x2+mx+n的圖像經(jīng)過點(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代數(shù)式mn+1有最小值-3.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,以及二次函數(shù)的性質(zhì),把函數(shù)mn+1的解析式化成頂點式是解題的關(guān)鍵.4、B【解析】根據(jù)陰影部分的面積是(扇形CBB'的面積﹣△CA'B'的面積)+(△ABC的面積﹣扇形CAA'的面積),代入數(shù)值解答即可.【詳解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴陰影部分的面積=45π·(42)故選B.【點睛】本題考查了扇形面積公式的應(yīng)用,觀察圖形得到陰影部分的面積是(扇形CBB'的面積﹣△CA'B'的面積)+(△ABC的面積﹣扇形CAA'的面積)是解決問題的關(guān)鍵.5、B【解析】分析:畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的兩張卡片上數(shù)字之積為負數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.詳解:畫樹狀圖如下:由樹狀圖可知共有12種等可能結(jié)果,其中抽取的兩張卡片上數(shù)字之積為負數(shù)的結(jié)果有4種,所以抽取的兩張卡片上數(shù)字之積為負數(shù)的概率為=,故選:B.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.6、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.【點睛】本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進行推理是解此題的關(guān)鍵.7、A【分析】由(-1,0),(3,0)和(0,3)坐標都滿足函數(shù),∴①是正確的;從圖象可以看出圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,②也是正確的;根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當或時,函數(shù)值隨值的增大而增大,因此③也是正確的;函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應(yīng)的的值為或,因此④也是正確的;從圖象上看,存在函數(shù)值大于當時的,因此⑤時不正確的;逐個判斷之后,可得出答案.【詳解】解:①∵(-1,0),(3,0)和(0,3)坐標都滿足函數(shù),∴①是正確的;②從圖象可知圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,因此②也是正確的;③根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當或時,函數(shù)值y隨x值的增大而增大,因此③也是正確的;④函數(shù)圖象的最低點就是與x軸的兩個交點,根據(jù)y=0,求出相應(yīng)的x的值為或,因此④也是正確的;⑤從圖象上看,存在函數(shù)值要大于當時的,因此⑤是不正確的;故選A【點睛】理解“鵲橋”函數(shù)的意義,掌握“鵲橋”函數(shù)與與二次函數(shù)之間的關(guān)系;兩個函數(shù)性質(zhì)之間的聯(lián)系和區(qū)別是解決問題的關(guān)鍵;二次函數(shù)與軸的交點、對稱性、對稱軸及最值的求法以及增減性應(yīng)熟練掌握.8、A【分析】由于相似三角形的面積比等于相似比的平方,已知了兩個相似三角形的面積比,即可求出它們的相似比;再根據(jù)相似三角形的周長比等于相似比即可得解.【詳解】∵兩個相似三角形的面積之比為4:9,

∴兩個相似三角形的相似比為2:1,

∴這兩個相似三角形的周長之比為2:1.故選A【點睛】本題考查的是相似三角形的性質(zhì):相似三角形的周長比等于相似比,面積比等于相似比的平方.9、B【解析】將特殊角的三角函數(shù)值代入求解.【詳解】解:sin45°=.故選:B.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值.10、C【分析】根據(jù)勾股定理求出斜邊AB的值,在利用余弦的定義直接計算即可.【詳解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故選:C.【點睛】本題主要考查銳角三角函數(shù)的定義,解決此類題時,要注意前提條件是在直角三角形中,此外還有熟記三角函數(shù)是定義.二、填空題(每小題3分,共24分)11、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結(jié)果數(shù),其中兩枚硬幣全部正面向上的結(jié)果數(shù)為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.12、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,13、【分析】根據(jù)題意設(shè)多項式可以分解為:(x+ay+c)(2x+by+d),則2c+d=k,根據(jù)cd=6,求出所有符合條件的c、d的值,然后再代入ad+bc=0求出a、b的值,與2a+b=1聯(lián)立求出a、b的值,a、b是整數(shù)則符合,否則不符合,最后把符合條件的值代入k進行計算即可.【詳解】解:設(shè)能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6時,ad+bc=6a+b=0,與2a+b=1聯(lián)立求解得,或c=6,d=1時,ad+bc=a+6b=0,與2a+b=1聯(lián)立求解得,②c=2,d=3時,ad+bc=3a+2b=0,與2a+b=1聯(lián)立求解得,或c=3,d=2時,ad+bc=2a+3b=0,與2a+b=1聯(lián)立求解得,③c=-2,d=-3時,ad+bc=-3a-2b=0,與2a+b=1聯(lián)立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,與2a+b=1聯(lián)立求解得,④c=-1,d=-6時,ad+bc=-6a-b=0,與2a+b=1聯(lián)立求解得,或c=-6,d=-1時,ad+bc=-a-6b=0,與2a+b=1聯(lián)立求解得,∴c=2,d=3時,c=-2,d=-3時,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整數(shù)k的值是1,-1.故答案為:.【點睛】本題考查因式分解的意義,設(shè)成兩個多項式的積的形式是解題的關(guān)鍵,要注意6的所有分解結(jié)果,還需要用a、b進行驗證,注意不要漏解.14、1.【詳解】解:連接OA,⊙O的直徑CD=20,則⊙O的半徑為10,即OA=OC=10,又∵OM:OC=3:5,∴OM=6,∵AB⊥CD,垂足為M,∴AM=BM,在Rt△AOM中,AM==8,∴AB=2AM=2×8=1,故答案為:1.15、【分析】分別求出大正方形和小正方形的邊長,再利用勾股定理列式求出AC,然后根據(jù)正弦和余弦的定義即可求cosα的值.【詳解】∵小正方形面積為49,大正方形面積為169,∴小正方形的邊長是7,大正方形的邊長是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC?60=0,解得AC=5,AC=?12(舍去),∴BC==12,∴cosα==故填:.【點睛】本題考查了勾股定理的證明,銳角三角形函數(shù)的定義,利用勾股定理列式求出直角三角形的較短的直角邊是解題的關(guān)鍵.16、(30+30)【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在Rt△BCD中求出BD,相加可得AB的長.【詳解】解:過C作CD⊥AB于D點,由題意可得,

∠ACD=30°,∠BCD=45°,AC=1.

在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC?cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與小島A的距離是(30+30)海里.

故答案為:(30+30).【點睛】此題主要考查了解直角三角形的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.17、∠ACP=∠B(或).【分析】由于△ACP與△ABC有一個公共角,所以可利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似或有兩組角對應(yīng)相等的兩個三角形相似進行添加條件.【詳解】解:∵∠PAC=∠CAB,∴當∠ACP=∠B時,△ACP∽△ABC;當時,△ACP∽△ABC.故答案為:∠ACP=∠B(或).【點睛】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似:有兩組角對應(yīng)相等的兩個三角形相似.18、(1,5)16【分析】先將M、N兩點坐標分別求出,然后根據(jù)N點的移動規(guī)律得出M點的橫坐標向右移動2個單位長度,進一步即可求出M點坐標;根據(jù)二次函數(shù)圖像性質(zhì)我們可以推斷出MN平移到PQ掃過的陰影部分的面積等同于菱形MNQP,之后進一步求出相關(guān)面積即可.【詳解】由題意得:M點坐標為(-1,1),N點坐標為(1,-3),∵點Q橫坐標為3,∴N點橫坐標向右平移了2個單位長度,∴P點橫坐標為-1+2=1,∴P點縱坐標為:1+2+2=5,∴P點坐標為:(1,5),由題意得:Q點坐標為:(3,1),∴MQ平行于x軸,PN平行于Y軸,∴MQ⊥PN,∴四邊形MNQP為菱形,∴菱形MNQP面積=×MQ×PN=16,∴MN平移到PQ掃過的陰影部分的面積等于16,故答案為:(1,5),16.【點睛】本題主要考查了二次函數(shù)圖像的性質(zhì)及運用,熟練掌握相關(guān)概念是解題關(guān)鍵.三、解答題(共66分)19、(1)畫圖見解析,π;(2)畫圖見解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分別得出△ABC繞點O逆時針旋轉(zhuǎn)90o后的對應(yīng)點得到的位置,進而得到旋轉(zhuǎn)后的得到,而點A所走的路徑長為以O(shè)為圓心,以O(shè)A長為半徑且圓心角為90°的扇形弧長;(2)由點P的對應(yīng)點為P2(a+6,b+2)可知△ABC向右平移6個單位長度,再向上平移2個單位長度,即可得到的△A2B2C2;(3)以位似比2:1作圖即可,注意有兩個圖形,與點P對應(yīng)的點P3的坐標是由P的橫、縱坐標都乘以2或-2得到的.【詳解】解:(1)如圖所示,∵∴點A所走的路徑長為:故答案為π(2)∵由點P的對應(yīng)點為P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6個單位長度,再向上平移2個單位長度可得到的,∴點A對應(yīng)點A2坐標為(4,4)△A2B2C2如圖所示,(3)∵P(a,b)且以點O為位似中心,△A3B3C3與△ABC的位似比為2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如圖所示,20、(1)答案為③;(2)v=30時,q達到最大值,q的最大值為1;(3)84<k≤2【分析】(1)根據(jù)一次函數(shù),反比例函數(shù)和二次函數(shù)的性質(zhì),結(jié)合表格數(shù)據(jù),即可得到答案;(2)把二次函數(shù)進行配方,即可得到答案;(3)把v=12,v=18,分別代入二次函數(shù)解析式,求出q的值,進而求出對應(yīng)的k值,即可得到答案.【詳解】(1)∵,q隨v的增大而增大,∴①不符合表格數(shù)據(jù),∵,q隨v的增大而減小,∴②不符合表格數(shù)據(jù),∵,當q≤30時,q隨v的增大而增大,q≥30時,q隨v的增大而減小,∴③基本符合表格數(shù)據(jù),故答案為:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴當v=30時,q達到最大值,q的最大值為1.答:當該路段的車流速度為30千米/小時,流量達到最大,最大流量是1輛/小時.(3)當v=12時,q=﹣2×122+120×12=1152,此時k=1152÷12=2,當v=18時,q=﹣2×182+120×18=1512,此時k=1512÷18=84,∴84<k≤2.答:當84<k≤2時,該路段將出現(xiàn)輕度擁堵.【點睛】本題主要考查二次函數(shù)的實際應(yīng)用,理解二次函數(shù)的性質(zhì),是解題的關(guān)鍵.21、3﹣.【分析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】2cos60°+4sin60°?tan30°﹣cos45°=2×+4××﹣=1+2﹣=3﹣.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.22、(1);(2)見解析.【分析】(1)根據(jù)頂點公式求出D坐標(利用a,b,c表示),得到OC,DH(利用a,b,c表示)值,因為S△ABD:S△ACB=9:16,所以得到DH:OC=9:16,得到c=4a,利用交點式得出A,B即可.(2)由題意可以得到,求出DH,EH(利用a表示),因為△DBH與△BEH相似,得到,即可求出a(注意舍棄正值),得到解析式.【詳解】解:(1)∴∵C(0,c)∴OC=-c,DH=∵S△ABD:S△ACB=9∶16∴∴∴∴(2)①∵EH∥OC∴△AEH∽△ACO∴∴∴∵∵△DBH與△BEH相似∴∠BDH=∠EBH,又∵∠BHD=∠BHE=90°∴△DBH∽△BEH∴∴∴(舍去正值)∴【點睛】此題主要考查了二次函數(shù)與相似三角形等知識,熟練運用待定系數(shù)法、相似三角形是解題的關(guān)鍵.23、(1)證明見詳解;(2)8.【分析】(1)根據(jù)角平分線的定義和同圓的半徑相等可得OD∥AC,證明OD⊥CB,可得結(jié)論;(2))在Rt△ACD中,設(shè)CD=a,則AC=2a,AD=,證明△ACD∽△ADE,表示a=,由平行線分線段成比例定理得:,代入可得結(jié)論.【詳解】(1)證明:連接OD,∵AG是∠HAF的平分線,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直線BC是⊙O的切線;(2)解:在Rt△ACD中,設(shè)CD=a,則AC=2a,AD=,連接DE,∵AE是⊙O的直徑,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴,由(1)知:OD∥AC,解得BD=【點睛】本題考查切線的判定、勾股定理、相似三角形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論