安徽亳州花溝中學2022-2023學年數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
安徽亳州花溝中學2022-2023學年數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
安徽亳州花溝中學2022-2023學年數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
安徽亳州花溝中學2022-2023學年數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
安徽亳州花溝中學2022-2023學年數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知反比例函數(shù)y=﹣,下列結論不正確的是()A.圖象必經(jīng)過點(﹣1,3) B.若x>1,則﹣3<y<0C.圖象在第二、四象限內(nèi) D.y隨x的增大而增大2.如圖,四邊形ABCD內(nèi)接于⊙O,連接AC,BD,點E在AD的延長線上,()A.若DC平分∠BDE,則AB=BCB.若AC平分∠BCD,則C.若AC⊥BD,BD為直徑,則D.若AC⊥BD,AC為直徑,則3.如圖,AD是半圓的直徑,點C是弧BD的中點,∠BAD=70°,則∠ADC等于()A.50° B.55° C.65° D.70°4.若點,,都在反比例函數(shù)的圖象上,則,,的大小關系是()A. B. C. D.5.已知二次函數(shù)y=x2﹣6x+m(m是實數(shù)),當自變量任取x1,x2時,分別與之對應的函數(shù)值y1,y2滿足y1>y2,則x1,x2應滿足的關系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|6.二次函數(shù)的圖像如圖所示,它的對稱軸為直線,與軸交點的橫坐標分別為,,且.下列結論中:①;②;③;④方程有兩個相等的實數(shù)根;⑤.其中正確的有()A.②③⑤ B.②③ C.②④ D.①④⑤7.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤8.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根9.二次根式中x的取值范圍是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣210.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球二、填空題(每小題3分,共24分)11.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結果保留π)12.如圖,要測量池塘兩岸相對的A,B兩點間的距離,可以在池塘外選一點C,連接AC,BC,分別取AC,BC的中點D,E,測得DE=50m,則AB的長是_______m.13.若圓錐的母線長為,底面半徑為,則圓錐的側(cè)面展開圖的圓心角應為_________________度.14.不等式組的解集為__________.15.寫出一個經(jīng)過點(0,3)的二次函數(shù):________.16.如圖,點A,B,C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,則∠ADC的度數(shù)為_____.17.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分成6個大小相同的扇形,顏色分為紅、綠、黃三種顏色.指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形).轉(zhuǎn)動一次轉(zhuǎn)盤后,指針指向_____顏色的可能性大.18.如圖,有一斜坡,坡頂離地面的高度為,斜坡的傾斜角是,若,則此斜坡的為____m.三、解答題(共66分)19.(10分)拋物線與軸交于兩點(點在點的左側(cè)),且,,與軸交于點,點的坐標為(0,-2),連接,以為邊,點為對稱中心作菱形.點是軸上的一個動點,設點的坐標為,過點作軸的垂線交拋物線與點,交于點.(1)求拋物線的解析式;(2)軸上是否存在一點,使三角形為等腰三角形,若存在,請直接寫出點的坐標;若不存在,請說明理由;(3)當點在線段上運動時,試探究為何值時,四邊形是平行四邊形?請說明理由.20.(6分)如圖,在正方形網(wǎng)格上有以及一條線段.請你以為一條邊.以正方形網(wǎng)格的格點為頂點畫一個,使得與相似,并求出這兩個三角形的相似比.21.(6分)如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚海?)線段AE與CG是否相等?請說明理由.(2)若設AE=x,DH=y,當x取何值時,y最大?最大值是多少?(3)當點E運動到AD的何位置時,△BEH∽△BAE?22.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.(1)求證:AC=AD.(2)當,AD=6時,求CD的長.23.(8分)知識改變世界,科技改變生活,導航裝備的不斷更新極大方便了人們的出行.周末,小強一家到兩處景區(qū)游玩,他們從家處出發(fā),向正西行駛160到達處,測得處在處的北偏西15°方向上,出發(fā)時測得處在處的北偏西60°方向上(1)填空:度;(2)求處到處的距離即的長度(結果保留根號)24.(8分)如圖,已知是的一條弦,請用尺規(guī)作圖法找出的中點.(保留作圖痕跡,不寫作法)25.(10分)如圖,拋物線與軸交于、兩點,與軸交于點,且.(1)求拋物線的解析式及頂點的坐標;(2)判斷的形狀,證明你的結論;(3)點是拋物線對稱軸上的一個動點,當周長最小時,求點的坐標及的最小周長.26.(10分)如圖,△ABC的高AD、BE相交于點F.求證:.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】A.

∵(?1)×3=?3,∴圖象必經(jīng)過點(?1,3),故正確;B.

∵k=?3<0,∴函數(shù)圖象的兩個分支分布在第二、四象限,故正確;C.

∵x=1時,y=?3且y隨x的增大而而增大,∴x>1時,?3<y<0,故正確;D.函數(shù)圖象的兩個分支分布在第二、四象限,在每一象限內(nèi),y隨x的增大而增大,故錯誤.故選D.2、D【分析】利用圓的相關性質(zhì),依次分析各選項作答.【詳解】解:A.若平分,則,∴A錯B.若平分,則,則,∴B錯C.若,為直徑,則∴C錯D.若,AC為直徑,如圖:連接BO并延長交于點E,連接DE,∵,∴.∵BE為直徑,∴,,∴.∴選D.【點睛】本題考查圓的相關性質(zhì),另外需結合勾股定理,三角函數(shù)相關知識解題屬于綜合題.3、B【解析】連接BD,根據(jù)直徑所對的圓周角為直角可得∠ABD=90°,即可求得∠ADB=20°,再由圓內(nèi)接四邊形的對角互補可得∠C=110°,因,即可得BC=DC,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【詳解】解:連接BD,∵AD是半圓O的直徑,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故選B.【點睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、等腰三角形的性質(zhì)及三角形的內(nèi)角和定理等知識,熟練運用相關知識是解決問題的關鍵.4、B【分析】將A、B、C三點坐標分別代入反比例函數(shù)的解析式,求出的值比較其大小即可【詳解】∵點,,都在反比例函數(shù)的圖象上,∴分別把x=-3、x=-2、x=1代入得,,∴故選B【點睛】本題考查了反比例函數(shù)的圖像和性質(zhì),熟練掌握相關的知識點是解題的關鍵.5、D【分析】先利用二次函數(shù)的性質(zhì)確定拋物線的對稱軸為直線x=3,然后根據(jù)離對稱軸越遠的點對應的函數(shù)值越大可得到|x1-3|>|x2-3|.【詳解】解:拋物線的對稱軸為直線x=-=3,∵y1>y2,

∴點(x1,y1)比點(x2,y2)到直線x=3的距離要大,

∴|x1-3|>|x2-3|.

故選D.【點睛】本題考查二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質(zhì).6、A【分析】利用拋物線開口方向得到a<0,利用對稱軸位置得到b>0,利用拋物線與y軸的交點在x軸下方得c<0,則可對①進行判斷;根據(jù)二次函數(shù)的對稱性對②③進行判斷;利用拋物線與直線y=2的交點個數(shù)對④進行判斷,利用函數(shù)與坐標軸的交點列出不等式即可判斷⑤.【詳解】∵拋物線開口向下,∴a<0,∵對稱軸為直線∴b=-2a>0∵拋物線與y軸的交點在x軸下方,∴c<-1,∴abc>0,所以①錯誤;∵,對稱軸為直線∴故,②正確;∵對稱軸x=1,∴當x=0,x=2時,y值相等,故當x=0時,y=c<0,∴當x=2時,y=,③正確;如圖,作y=2,與二次函數(shù)有兩個交點,故方程有兩個不相等的實數(shù)根,故④錯誤;∵當x=-1時,y=a-b+c=3a+c>0,當x=0時,y=c<-1∴3a>1,故,⑤正確;故選A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).也考查了二次函數(shù)的性質(zhì).7、D【解析】根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設正方形ABCD的邊長為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.8、D【分析】由根的判別式△判斷即可.【詳解】解:△=b2-4ac=(-4)2-4×5=-4<0,方程沒有實數(shù)根.故選擇D.【點睛】本題考查了一元二次方程根與判別式的關系.9、A【解析】根據(jù)二次根式有意義的條件即可求出x的范圍.【詳解】由題意可知:x+2≥0,∴x≥﹣2,故選:A.【點睛】本題考查二次根式有意義的條件,解題的關鍵是正確理解二次根式有意義的條件,本題屬于基礎題型.10、A【分析】根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.二、填空題(每小題3分,共24分)11、π【分析】如圖,設圖中③的面積為S1.構建方程組即可解決問題.【詳解】解:如圖,設圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質(zhì)等知識,解題的關鍵是學會利用參數(shù)構建方程組解決問題.12、1【分析】先判斷出DE是△ABC的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得AB=2DE,問題得解.【詳解】∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=2×50=1米.故答案為1.【點睛】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準確識圖是解題的關鍵.13、【分析】根據(jù)圓錐側(cè)面展開圖的弧長等于圓錐底面圓的周長列式計算,弧長公式為,圓周長公式為.【詳解】解:圓錐的側(cè)面展開圖的圓心角度數(shù)為n°,根據(jù)題意得,,∴n=144∴圓錐的側(cè)面展開圖的圓心角度數(shù)為144°.故答案為:144°.【點睛】本題考查圓錐的側(cè)面展開圖公式;用到的知識點為,圓錐的側(cè)面展開圖的弧長等于圓錐的底面圓周長.記準公式及有空間想象力是解答此題的關鍵.14、【解析】首先分別解出兩個不等式的解集,再確定不等式組的解集.【詳解】解答:,

由①得:,

由②得:,

∴不等式組的解集為,故答案為:【點睛】此題主要考查了解一元一次不等式組,關鍵是解不等式.15、(答案不唯一)【分析】設二次函數(shù)的表達式為y=x2+x+c,將(0,3)代入得出c=3,即可得出二次函數(shù)表達式.【詳解】解:設二次函數(shù)的表達式為y=ax2+bx+c(a≠0),

∵圖象為開口向上,且經(jīng)過(0,3),

∴a>0,c=3,

∴二次函數(shù)表達式可以為:y=x2+3(答案不唯一).

故答案為:y=x2+3(答案不唯一).【點睛】本題主要考查了用待定系數(shù)法求二次函數(shù)解析式,得出c=3是解題關鍵,屬開放性題目,答案不唯一.16、110°【解析】試題分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案為110°.考點:圓周角定理.17、紅【解析】哪一種顏色多,指針指向那種顏色的可能性就大.【詳解】∵轉(zhuǎn)盤分成6個大小相同的扇形,紅色的有3塊,∴轉(zhuǎn)動一次轉(zhuǎn)盤后,指針指向紅顏色的可能性大.故答案為:紅.【點睛】本題考查了可能性大小的知識,解題的關鍵是看清那種顏色的最多,難度不大.18、1.【分析】由三角函數(shù)定義即可得出答案.【詳解】解:∵,,∴;故答案為:1.【點睛】本題考查了解直角三角形的應用;熟練掌握三角函數(shù)定義是解題的關鍵.三、解答題(共66分)19、(1)y=x2-x-2;(2)P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1時.【分析】(1)根據(jù)題意,可設拋物線表達式為,再將點C坐標代入即可;(2)設點P的坐標為(m,0),表達出PB2、PC2、BC2,再進行分類討論即可;(3)根據(jù)“當MQ=DC時,四邊形CQMD為平行四邊形”,用m的代數(shù)式表達出MQ=DC求解即可.【詳解】解:(1)∵拋物線與x軸交于A(-1,0),B(4,0)兩點,

故可設拋物線的表達式為:,將C(0,-2)代入得:-4a=-2,解得:a=∴拋物線的解析式為:y=x2-x-2(2)設點P的坐標為(m,0),

則PB2=(m-4)2,PC2=m2+4,BC2=20,

①當PB=PC時,(m-4)2=m2+4,解得:m=②當PB=BC時,同理可得:m=4±2③當PC=BC時,同理可得:m=±4(舍去4),故點P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)∵C(0,-2)

∴由菱形的對稱性可知,點D的坐標為(0,2),

設直線BD的解析式為y=kx+2,又B(4,0)

解得k=-1,

∴直線BD的解析式為y=-x+2;

則點M的坐標為(m,-m+2),點Q的坐標為(m,m2-m-2)當MQ=DC時,四邊形CQMD為平行四邊形∴-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故當m=1時,四邊形CQMD為平行四邊形.【點睛】本題考查了二次函數(shù)與幾何的綜合應用,難度適中,解題的關鍵是靈活應用二次函數(shù)的性質(zhì)與三角形、四邊形的判定及性質(zhì).20、圖見解析,與的相似比是.【分析】可先選定BC與DE為對應邊,對應邊之比為1:2,據(jù)此來選定點F的位置,相似比亦可得.【詳解】解:如圖,與相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【點睛】此題主要考查了相似三角形的判定與性質(zhì),利用網(wǎng)格得出三角形各邊長度是解題關鍵.21、(1)AE=CG,見解析;(2)當x=1時,y有最大值,為;(3)當E點是AD的中點時,△BEH∽△BAE,見解析.【解析】(1)由正方形的性質(zhì)可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可證△ABE≌△CBG,可得AE=CG;(2)由正方形的性質(zhì)可得∠A=∠D=∠FEB=90°,由余角的性質(zhì)可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函數(shù)的性質(zhì)可求最大值;(3)當E點是AD的中點時,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可證△BEH∽△BAE.【詳解】(1)AE=CG,理由如下:∵四邊形ABCD,四邊形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四邊形ABCD,四邊形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴當x=1時,y有最大值為;(3)當E點是AD的中點時,△BEH∽△BAE,理由如下:∵E是AD中點,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.【點睛】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),二次函數(shù)的性質(zhì),靈活運用這些性質(zhì)進行推理是本題的關鍵.22、(1)證明見解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠ACD=∠ADC,從而得到結論;(2)根據(jù)等腰三角形的性質(zhì)得到∠E=∠ABE,則可證明△ABE∽△ACD,然后根據(jù)相似比求出CD的長.【詳解】(1)證明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)解:∵AE=AB,∴∠E=∠ABE,∴∠E=∠ABE=∠ACD=∠ADC,∴△ABE∽△ACD,∴==,∴CD=AD=×6=1.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論