




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.將拋物線向上平移兩個單位長度,再向右平移一個單位長度后,得到的拋物線解析式是()A. B. C. D.2.平面直角坐標系內一點P(2,-3)關于原點對稱點的坐標是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)3.二次函數(shù)y=ax2+bx+c(a≠0)與一次函數(shù)y=ax+c在同一坐標系中的圖象大致為()A. B. C. D.4.在相同時刻,物高與影長成正比.如果高為1.5米的標桿影長為2.5米,那么此時高為18米的旗桿的影長為()A.20米 B.30米 C.16米 D.15米5.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應的刻度是()A.19.4 B.19.5 C.19.6 D.19.76.如圖,四邊形中,,,,設的長為,四邊形的面積為,則與之間的函數(shù)關系式是()A. B. C. D.7.在一個不透明的袋子中,裝有紅球、黃球、籃球、白球各1個,這些球除顏色外無其他差別,從袋中隨機取出一個球,取出紅球的概率為()A.
B.
C.
D.18.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°9.若點A(1,y1)、B(2,y2)都在反比例函數(shù)的圖象上,則y1、y2的大小關系為A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y210.二次函數(shù)y=﹣x2+2x﹣4,當﹣1<x<2時,y的取值范圍是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣3二、填空題(每小題3分,共24分)11.如圖,在中,,,,將繞點逆時針旋轉得到,連接,則的長為__________.12.若圓中一條弦長等于半徑,則這條弦所對的圓周角的度數(shù)為______.13.如圖,在平面直角坐標系中,,P是經過O,A,B三點的圓上的一個動點(P與O,B兩點不重合),則__________°,__________°.14.如圖,矩形的面積為,它的對角線與雙曲線相交于點,且,則________.15.如圖,將⊙O沿弦AB折疊,圓弧恰好經過圓心O,點P是優(yōu)弧上一點,則∠APB的度數(shù)為_____.16.已知一塊圓心角為300°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),若圓錐的底面圓的直徑是80cm,則這塊扇形鐵皮的半徑是_____cm.17.如圖,在中,,以點A為圓心,2為半徑的與BC相切于點D,交AB于點E,交AC于點F,點P是上的一點,且,則圖中陰影部分的面積為______.18.如圖,一個小球由地面沿著坡度i=1:3的坡面向上前進了10m,此時小球距離地面的高度為_________m.三、解答題(共66分)19.(10分)已知關于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有實數(shù)根,求m的取值范圍.(2)若方程的兩實數(shù)根為x1、x2,且x12+x22=5,求m的值.20.(6分)用適當?shù)姆椒ń夥匠蹋海?)x2+2x=0(2)x2﹣4x+1=021.(6分)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.(1)求證:△ABC∽△BDC.(2)若AC=8,BC=6,求△BDC的面積.22.(8分)如圖,某市郊外景區(qū)內一條筆直的公路經過、兩個景點,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點.經測量,位于的北偏東的方向上,的北偏東的方向上,且.(1)求景點與的距離.(2)求景點與的距離.(結果保留根號)23.(8分)如圖所示,已知為⊙的直徑,是弦,且于點,連接AC、OC、BC.(1)求證:;(2)若,,求⊙的直徑.24.(8分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內一點,當以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標.25.(10分)綜合與實踐在數(shù)學活動課上,老師出示了這樣一個問題:如圖1,在中,,,,點為邊上的任意一點.將沿過點的直線折疊,使點落在斜邊上的點處.問是否存在是直角三角形?若不存在,請說明理由;若存在,求出此時的長度.探究展示:勤奮小組很快找到了點、的位置.如圖2,作的角平分線交于點,此時沿所在的直線折疊,點恰好在上,且,所以是直角三角形.問題解決:(1)按勤奮小組的這種折疊方式,的長度為.(2)創(chuàng)新小組看完勤奮小組的折疊方法后,發(fā)現(xiàn)還有另一種折疊方法,請在圖3中畫出來.(3)在(2)的條件下,求出的長.26.(10分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由平移可知,拋物線的開口方向和大小不變,頂點改變,將拋物線化為頂點式,求出頂點,再由平移求出新的頂點,然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:,即拋物線的頂點坐標為,把點向上平移2個單位長度,再向右平移1個單位長度得到點的坐標為,所以平移后得到的拋物線解析式為.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.2、C【解析】略3、D【分析】先根據(jù)一次函數(shù)的圖象判斷a、c的符號,再判斷二次函數(shù)圖象與實際是否相符,判斷正誤.【詳解】解:A、由一次函數(shù)y=ax+c的圖象可得:a>0,此時二次函數(shù)y=ax2+bx+c的圖象應該開口向上,錯誤;
B、由一次函數(shù)y=ax+c的圖象可得:a>0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應該開口向上,交于y軸的正半軸,錯誤;
C、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應該開口向下,錯誤.
D、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應該開口向下,與一次函數(shù)的圖象交于同一點,正確;
故選:D.【點睛】本題考查二次函數(shù)的圖象,一次函數(shù)的圖象,解題的關鍵是熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質:開口方向、對稱軸、頂點坐標等.4、B【分析】設此時高為18米的旗桿的影長為xm,利用“在同一時刻物高與影長的比相等”列出比例式,進而即可求解.【詳解】設此時高為18米的旗桿的影長為xm,根據(jù)題意得:=,解得:x=30,∴此時高為18米的旗桿的影長為30m.故選:B.【點睛】本題考查了相似三角形的應用,掌握相似三角形的性質和“在同一時刻物高與影長的比相等”的原理,是解題的關鍵.5、C【分析】根據(jù)兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應的刻度是11.6,得出上面直尺的10個小刻度,對應下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應的刻度是11.6,即上面直尺的10個小刻度,對應下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應下面直尺的16個小刻度是解題的關鍵.6、C【分析】四邊形ABCD圖形不規(guī)則,根據(jù)已知條件,將△ABC繞A點逆時針旋轉90°到△ADE的位置,求四邊形ABCD的面積問題轉化為求梯形ACDE的面積問題;根據(jù)全等三角形線段之間的關系,結合勾股定理,把梯形上底DE,下底AC,高DF分別用含x的式子表示,可表示四邊形ABCD的面積.【詳解】作AE⊥AC,DE⊥AE,兩線交于E點,作DF⊥AC垂足為F點,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,設BC=a,則DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四邊形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故選C.【點睛】本題運用了旋轉法,將求不規(guī)則四邊形面積問題轉化為求梯形的面積,充分運用了全等三角形,勾股定理在解題中的作用.7、C【詳解】解:∵共有4個球,紅球有1個,∴摸出的球是紅球的概率是:P=.故選C.【點睛】本題考查概率公式.8、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.9、C【解析】根據(jù)反比例函數(shù)圖象的增減性進行判斷:根據(jù)反比例函數(shù)的性質:當時,圖象分別位于第一、三象限,在每個象限內,y隨x的增大而減?。划敃r,圖象分別位于第二、四象限,在每個象限內,y隨x的增大而增大.∵反比例函數(shù)的解析式中的,∴點A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故選C.10、B【分析】先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性求出最小值和最大值即可.【詳解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函數(shù)的對稱軸為直線x=1,∴﹣1<x<2時,x=1取得最大值為﹣1,x=﹣1時取得最小值為﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范圍是﹣7<y≤﹣1.故選:B.【點睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的增減性和對稱性,確定出對稱軸從而判斷出取得最大值和最小值的情況是解題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】由旋轉的性質可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【詳解】∵將△ABC繞點A逆時針旋轉60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案為:1.【點睛】本題考查了旋轉的性質,勾股定理,熟練旋轉的性質是本題的關鍵.12、30°或150°【解析】與半徑相等的弦與兩條半徑可構成等邊三角形,所以這條弦所對的圓心角為60°,而弦所對的圓周角兩個,根據(jù)圓內接四邊形對角互補可知,這兩個圓周角互補,其中一個圓周角的度數(shù)為12×60故答案為30°或150°.13、4545或135【分析】易證△OAB是等腰直角三角形,據(jù)此即可求得∠OAB的度數(shù),然后分當P在弦OB所對的優(yōu)弧上和在弦OB所對的劣弧上,兩種情況進行討論,利用圓周角定理求解.【詳解】解:∵O(0,0)、A(0,2)、B(2,0),
∴OA=2,OB=2,
∴△OAB是等腰直角三角形.
∴∠OAB=45°,
當P在弦OB所對的優(yōu)弧上時,∠OPB=∠OAB=45°,
當P在弦OB所對的劣弧上時,∠OPB=180°-∠OAB=135°.
故答案是:45°,45°或135°.【點睛】本題考查了圓周角定理,正確理解應分兩種情況進行討論是關鍵.14、12【解析】試題分析:由題意,設點D的坐標為(x,y),則點B的坐標為(,),所以矩形OABC的面積,解得∵圖象在第一象限,∴.考點:反比例系數(shù)k的幾何意義點評:反比例系數(shù)k的幾何意義是初中數(shù)學的重點,是中考常見題,一般難度不大,需熟練掌握.15、60°【解析】分析:作半徑OC⊥AB于D,連結OA、OB,如圖,根據(jù)折疊的性質得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關系得到∠OAD=30°,接著根據(jù)三角形內角和定理可計算出∠AOB=120°,然后根據(jù)圓周角定理計算∠APB的度數(shù).詳解:如圖作半徑OC⊥AB于D,連結OA、OB.∵將⊙O沿弦AB折疊,圓弧恰好經過圓心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案為60°.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了含30度的直角三角形三邊的關系和折疊的性質,求得∠OAD=30°是解題的關鍵.16、1【解析】利用底面周長=展開圖的弧長可得.【詳解】解:設這個扇形鐵皮的半徑為rcm,由題意得=π×80,解得r=1.故這個扇形鐵皮的半徑為1cm,故答案為1.【點睛】本題考查了圓錐的計算,解答本題的關鍵是確定圓錐的底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.17、【分析】圖中陰影部分的面積=S△ABC-S扇形AEF.由圓周角定理推知∠BAC=90°.【詳解】解:連接AD,在⊙A中,因為∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S陰影=4-故答案為:【點睛】本題考查了切線的性質與扇形面積的計算.求陰影部分的面積時,采用了“分割法”.18、【詳解】如圖:Rt△ABC中,∠C=90°,i=tanA=1:3,AB=1.設BC=x,則AC=3x,根據(jù)勾股定理,得:,解得:x=(負值舍去).故此時鋼球距地面的高度是米.三、解答題(共66分)19、(1)m≥;(2)m=3【分析】(1)根據(jù)判別式即可求出答案;(2)根據(jù)根與系數(shù)的關系即可求出答案.【詳解】解:(1)當m﹣2≠0時,△=1+8(m﹣2)≥0,∴m≥且m≠2,當m﹣2=0時,x﹣2=0,符合題意,綜上所述,m≥(2)由根與系數(shù)的關系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的解法,本題屬于基礎題型.20、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根據(jù)方程的特點可適當選擇解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【詳解】(1)或所以,(2),即所以,【點睛】本題考查了解元二次方程的方法,能夠根據(jù)題目的結構特點選擇合適的方法解一元二次方程,熟悉直接開平方法、配方法、公式法以及因式分解法的具體步驟是解題的關鍵.21、(1)詳見解析;(2)【分析】(1)由AB是⊙O的直徑,可得∠ACB=∠BCD=90°,又由BD是⊙O的切線,根據(jù)同角的余角相等,可得∠A=∠CBD,利用有兩角對應相等的三角形相似,即可證得△ABC∽△BDC;(2)由AC=8,BC=6,可求得△ABC的面積,又由△ABC∽△BDC,根據(jù)相似三角形的面積比等于相似比的平方,即可求得△BDC的面積.【詳解】(1)∵BD是⊙O的切線,∴AB⊥BD,∴∠ABD=90°.∴∠A+∠D=90°.∵AB是⊙O的直徑,∴∠ACB=∠BCD=90°,∴∠CBD+∠D=90°,∴∠A=∠CBD,∴△ABC∽△BDC;(2)∵△ABC∽△BDC,∴,∵AC=8,BC=6,∴S△ABCAC?BC8×6=24,∴S△BDC=S△ABC24÷()2.【點睛】本題考查了相似三角形的判定與性質、圓周角定理、切線的性質以及直角三角形的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.22、(1)BC=10km;(2)AC=10km.【分析】(1)由題意可求得∠C=30°,進一步根據(jù)等角對等邊即可求得結果;(2)分別在和中利用銳角三角函數(shù)的知識解直角三角形即可求得結果.【詳解】解:(1)過點作直線,垂足為,如圖所示.根據(jù)題意,得:,,∴∠C=∠CBD-∠CAD=30°,∴∠CAD=∠C,∴BC=AB=.(2)在中,,∴,在中,,∴.【點睛】本題考查了解直角三角形的應用,屬于基本題型,熟練掌握銳角三角函數(shù)的知識是解題的關鍵.23、(1)證明見解析;(2)10【分析】(1)先利用得到,再利用直角三角形的兩銳角互余即可求解;(2)利用垂徑定理得到CE=DE=,再得到,,在中,利用得到求出BE,即可得到求解..【詳解】(1)證明:∵∴又∵為直徑,∴,又∵∴,∴∴(2)∵,為直徑∴,∴又∵,∴,∴,∴,∴在中,即,解得,∴.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理.24、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據(jù)對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標,從而求出D的坐標算出BD的解析式,根據(jù)題意畫出圖形,設出P、G的坐標代入三角形的面積公式得出一元二次方程,聯(lián)立方程組解出即可;(3)分類討論①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),(ⅱ)當點M在y軸右側時,②當AM是正方形的對角線時,分別求出結果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設點P(x,),則點G(x,).∴,當x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯(lián)立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),如圖2,當點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,當x=時,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).當x=時,同理可得N(,),當點M在第三象限時,同理可得N(,).(ⅱ)當點M在y軸右側時,如圖3,點M在第一象限時,過點M作MH⊥x軸于點H設AH=b,同理△AHM≌△MGN(AAS),則點M(﹣1+b,b﹣).將點M的坐標代入拋物線解析式可得:b=(負值舍去)yN=y(tǒng)M+GM=y(tǒng)M+AH=,∴N(﹣,).當點M在第四象限時,同理可得N(﹣,-).②當AM是正方形的對角線時,當點M在y軸左側時,過點M作MG⊥對稱軸于點G,設對稱軸與x軸交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡約設計的力量
- 蘭考三農職業(yè)學院《數(shù)字信號處理與通信》2023-2024學年第二學期期末試卷
- 上海工程技術大學《復變函數(shù)B》2023-2024學年第一學期期末試卷
- 浙江省桐鄉(xiāng)市市級名校2025屆初三TOP20九月聯(lián)考(全國II卷)英語試題試卷含答案
- 2025年遼寧省撫順本溪鐵嶺遼陽葫蘆島市中考模擬試卷(1)化學試題含解析
- 廣東省深圳市深圳外國語達標名校2025年協(xié)作體中考摸底測試化學試題試卷含解析
- 甘肅省天水一中2025年高三下學期第二次模擬語文試題含解析
- 廣東省惠州市惠東縣2024-2025學年初三化學試題5月考前最后一卷含解析
- 重慶電子工程職業(yè)學院《項目管理與預算》2023-2024學年第二學期期末試卷
- 清新論文研究成果總結與展望
- 老姜盤口語言解密高級版全集
- 現(xiàn)代環(huán)境生物技術
- 第四章鉛酸蓄電池
- GA 1517-2018金銀珠寶營業(yè)場所安全防范要求
- 保險公司首轉對團隊的意義方法課件
- TAVI(經皮導管主動脈瓣植入術)術后護理
- 6.3.1 平面向量基本定理 課件(共15張PPT)
- 建筑消防設施巡查記錄
- 混凝土護欄檢查記錄表
- DBJ04∕T 258-2016 建筑地基基礎勘察設計規(guī)范
- 社會團體民辦非清算審計報告模板
評論
0/150
提交評論