版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省宜春第九中學(xué)2024屆中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.172.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:63.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm4.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%5.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點的半徑D.垂直于同一直線的兩條直線互相垂直6.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球7.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm8.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.49.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.10.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.1611.近兩年,中國倡導(dǎo)的“一帶一路”為沿線國家創(chuàng)造了約180000個就業(yè)崗位,將180000用科學(xué)記數(shù)法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×10412.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學(xué)知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集為,則的取值范圍為_____.14.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.15.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.16.因式分解:a2﹣a=_____.17.如圖,正方形ABCD邊長為3,以直線AB為軸,將正方形旋轉(zhuǎn)一周.所得圓柱的主視圖(正視圖)的周長是_____.18.的相反數(shù)是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應(yīng)如何調(diào)整進貨方案才能獲得最大利潤?20.(6分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.21.(6分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.22.(8分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?23.(8分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來.24.(10分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.25.(10分)為了解中學(xué)生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).26.(12分)今年義烏市準備爭創(chuàng)全國衛(wèi)生城市,某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.(1)求溫馨提示牌和垃圾箱的單價各是多少元?(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?27.(12分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數(shù)表達式;(2)求直線BC的函數(shù)表達式;(3)點E是點B關(guān)于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關(guān)系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關(guān)于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.2、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.3、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.4、D【解析】設(shè)第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了故選D.5、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯誤,垂直于同一直線的兩條直線平行.故選C.6、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點睛:本題考查簡單幾何體的三視圖,本題解題的關(guān)鍵是看出各個圖形的在任意方向上的視圖.7、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.8、B【解析】
由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據(jù)“相似三角形對應(yīng)邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質(zhì).靈活運用相似的性質(zhì)可得出解答.9、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.10、B【解析】
根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強,熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.11、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】180000=1.8×105,故選A.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、B【解析】
本題要根據(jù)過平面上的兩點有且只有一條直線的性質(zhì)解答.【詳解】根據(jù)兩點確定一條直線.故選:B.【點睛】本題考查了“兩點確定一條直線”的公理,難度適中.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.14、.【解析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設(shè)A(x,),從而表示出梯形BOCA的面積關(guān)于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設(shè)A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數(shù)綜合題,曲線上點的坐標與方程的關(guān)系,相似三角形的判定和性質(zhì),同底三角形面積的計算,梯形中位線的性質(zhì).15、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關(guān)鍵.16、a(a﹣1)【解析】
直接提取公因式a,進而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點睛】此題考查公因式,難度不大17、1.【解析】分析:所得圓柱的主視圖是一個矩形,矩形的寬是3,長是2.詳解:矩形的周長=3+3+2+2=1.點睛:本題比較容易,考查三視圖和學(xué)生的空間想象能力以及計算矩形的周長.18、﹣.【解析】
根據(jù)只有符號不同的兩個數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.【點睛】本題考查的知識點是相反數(shù),解題關(guān)鍵是熟記相反數(shù)的概念.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)甲種服裝最多購進75件,(2)見解析.【解析】
(1)設(shè)甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據(jù)購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】(1)設(shè)購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設(shè)總利潤為W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①當0<a<10時,10-a>0,W隨x增大而增大,∴當x=75時,W有最大值,即此時購進甲種服裝75件,乙種服裝25件;②當a=10時,所以按哪種方案進貨都可以;③當10<a<20時,10-a<0,W隨x增大而減?。攛=65時,W有最大值,即此時購進甲種服裝65件,乙種服裝35件.【點睛】本題考查了一元一次方程的應(yīng)用,不等式的應(yīng)用,以及一次函數(shù)的性質(zhì),正確利用x表示出利潤是關(guān)鍵.20、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=21、(1)詳見解析;(2)30°.【解析】
(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.22、大和尚有25人,小和尚有75人.【解析】
設(shè)大和尚有x人,小和尚有y人,根據(jù)100個和尚吃100個饅頭且1個大和尚分3個、3個小和尚分1個,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)大和尚有x人,小和尚有y人,依題意,得:,解得:.答:大和尚有25人,小和尚有75人.【點睛】考查了二元一次方程組的應(yīng)用,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.23、(1)-3;(2).【解析】分析:(1)代入30°角的余弦函數(shù)值,結(jié)合零指數(shù)冪、負整數(shù)指數(shù)冪的意義及二次根式的相關(guān)運算法則計算即可;(2)按照解一元一次不等式組的一般步驟解答,并把解集規(guī)范的表示到數(shù)軸上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式組的解集為:不等式組的解集在數(shù)軸上表示:點睛:熟記零指數(shù)冪的意義:,(,為正整數(shù))即30°角的余弦函數(shù)值是本題解題的關(guān)鍵.24、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;
(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).25、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】
(1)根據(jù)題意,本次接受調(diào)查的學(xué)生總?cè)藬?shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數(shù)”的概率乘以全校總?cè)藬?shù)求解即可.【詳解】(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數(shù)約為250000×=160000人.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表.26、(1)溫馨提示牌和垃圾箱的單價各是50元和150元;(2)答案見解析【解析】
(1)根據(jù)“購買2個溫馨提示牌和3個垃圾箱共需550元”,建立方程求解即可得出結(jié)論;(2)根據(jù)“費用不超過10000元和至少需要安放48個垃圾箱”,建立不等式即可得出結(jié)論.【詳解】(1)設(shè)溫情提示牌的單價為x元,則垃圾箱的單價為3x元,根據(jù)題意得,2x+3×3x=550,∴x=50,經(jīng)檢驗,符合題意,∴3x=150元,即:溫馨提示牌和垃圾箱的單價各是50元和150元;(2)設(shè)購買溫情提示牌y個(y為正整數(shù)),則垃圾箱為(100﹣y)個,根據(jù)題意得,意,∴∵y為正整數(shù),∴y為50,51,52,共3中方案;有三種方案:①溫馨提示牌50個,垃圾箱50個,②溫馨提示牌51個,垃圾箱49個,③溫馨提示牌52個,垃圾箱48個,設(shè)總費用為w元W=5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高新技術(shù)產(chǎn)品銷售合同管理規(guī)定2篇
- 二零二五年度游艇購置及保養(yǎng)維修協(xié)議3篇
- 2025版智能節(jié)能鋁合金門窗研發(fā)與推廣合作協(xié)議4篇
- 2025年項目抵押貸款合同范本解讀與實操6篇
- 2025版醫(yī)療器械融資委托擔保合同樣本3篇
- 二零二五年度貨車貨運保險與物流行業(yè)信用評估合同
- 2025年度智能機器人銷售與技術(shù)支持協(xié)議3篇
- 2025版新型綠色建筑材料供應(yīng)及施工合同4篇
- 2025版中英外教專業(yè)能力培訓(xùn)與雇傭合同3篇
- 個體資金借入合同:固定期限還款合同版
- 圖像識別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 個體戶店鋪租賃合同
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 【奧運會獎牌榜預(yù)測建模實證探析12000字(論文)】
- 保安部工作計劃
- 2023痛風診療規(guī)范(完整版)
- (完整word版)企業(yè)對賬函模板
- 土力學(xué)與地基基礎(chǔ)(課件)
- 主要負責人重大隱患帶隊檢查表
- 魯濱遜漂流記人物形象分析
- 危險廢物貯存?zhèn)}庫建設(shè)標準
評論
0/150
提交評論