貴州省清鎮(zhèn)市衛(wèi)城中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
貴州省清鎮(zhèn)市衛(wèi)城中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
貴州省清鎮(zhèn)市衛(wèi)城中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
貴州省清鎮(zhèn)市衛(wèi)城中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
貴州省清鎮(zhèn)市衛(wèi)城中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,正方形中,點是以為直徑的半圓與對角線的交點.現(xiàn)隨機向正方形內(nèi)投擲一枚小針,則針尖落在陰影區(qū)域的概率為()A. B. C. D.2.關(guān)于的方程是一元二次方程,則的取值范圍是()A. B. C. D.3.某校對部分參加夏令營的中學(xué)生的年齡(單位:歲)進行統(tǒng)計,結(jié)果如下表:則這些學(xué)生年齡的眾數(shù)和中位數(shù)分別是()年齡1314151617人數(shù)12231A.16,15 B.16,14 C.15,15 D.14,154.有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?若設(shè)每輪傳染中平均一個人傳染了x個人,那么x滿足的方程是()A. B. C. D.5.已知一條拋物線的表達式為,則將該拋物線先向右平移個單位長度,再向上平移個單位長度,得到的新拋物線的表達式為()A. B. C. D.6.已知點A(1,a)、點B(b,2)關(guān)于原點對稱,則a+b的值為()A.3 B.-3 C.-1 D.17.下列汽車標(biāo)志中,可以看作是中心對稱圖形的是A. B. C. D.8.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.69.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.先關(guān)于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度B.先關(guān)于軸對稱,再向右平移1個單位長度,最后再向下平移3個單位長度C.先關(guān)于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度D.先關(guān)于軸對稱,再向右平移1個單位長度,最后再向下平移3個單位長度10.如圖是胡老師畫的一幅寫生畫,四位同學(xué)對這幅畫的作畫時間作了猜測.根據(jù)胡老師給出的方向坐標(biāo),猜測比較合理的是()A.小明:“早上8點” B.小亮:“中午12點”C.小剛:“下午5點” D.小紅:“什么時間都行”二、填空題(每小題3分,共24分)11.若,,則______.12.已知反比例函數(shù)的圖象經(jīng)過點,若點在此反比例函數(shù)的圖象上,則________.13.點(2,5)在反比例函數(shù)的圖象上,那么k=_____.14.若扇形的半徑長為3,圓心角為60°,則該扇形的弧長為___.15.如圖,△ABC內(nèi)接于⊙O,若∠A=α,則∠OBC=_____.16.如圖三角形ABC的兩條高線BD,CE相交于點F,已知∠ABC等于60度,,CF=EF,則三角形ABC的面積為________(用含的代數(shù)式表示).17.已知和是方程的兩個實數(shù)根,則__________.18.分解因式:=__________三、解答題(共66分)19.(10分)從地面豎直向上拋出一個小球,小球的高度h(米)與運動時間t(秒)之間的關(guān)系式為h=30t﹣5t2,那么小球拋出秒后達到最高點.20.(6分)現(xiàn)有A、B兩個不透明袋子,分別裝有3個除顏色外完全相同的小球.其中,A袋裝有2個白球,1個紅球;B袋裝有2個紅球,1個白球.(1)將A袋搖勻,然后從A袋中隨機取出一個小球,求摸出小球是白色的概率;(2)小華和小林商定了一個游戲規(guī)則:從搖勻后的A,B兩袋中隨機摸出一個小球,摸出的這兩個小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝.請用列表法或畫出樹狀圖的方法說明這個游戲規(guī)則對雙方是否公平.21.(6分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.22.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若則HQ=.(2)如圖2,折疊使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得和相似?若存在,求出PQ的長;若不存在,請說明理由.23.(8分)如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.(1)求點A的坐標(biāo);(2)求拋物線的解析式;(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.①求點P的坐標(biāo);②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.24.(8分)小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).(1)求y與x的函數(shù)關(guān)系式.(2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.25.(10分)如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.26.(10分)對于平面直角坐標(biāo)系中的點和半徑為1的,定義如下:①點的“派生點”為;②若上存在兩個點,使得,則稱點為的“伴侶點”.應(yīng)用:已知點(1)點的派生點坐標(biāo)為________;在點中,的“伴侶點”是________;(2)過點作直線交軸正半軸于點,使,若直線上的點是的“伴侶點”,求的取值范圍;(3)點的派生點在直線,求點與上任意一點距離的最小值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接BE,如圖,利用圓周角定理得到∠AEB=90°,再根據(jù)正方形的性質(zhì)得到AE=BE=CE,于是得到陰影部分的面積=△BCE的面積,然后用△BCE的面積除以正方形ABCD的面積可得到鏢落在陰影部分的概率.【詳解】解:連接BE,如圖,

∵AB為直徑,

∴∠AEB=90°,

而AC為正方形的對角線,

∴AE=BE=CE,

∴弓形AE的面積=弓形BE的面積,

∴陰影部分的面積=△BCE的面積,

∴鏢落在陰影部分的概率=.

故選:B.【點睛】本題考查了幾何概率:某事件的概率=這個事件所對應(yīng)的面積除以總面積.也考查了正方形的性質(zhì).2、A【解析】根據(jù)一元二次方程的定義判斷即可.【詳解】∵是關(guān)于x的一元二次方程,

∴,

故選:A.【點睛】此題主要考查了一元二次方程定義,熟練掌握一元二次方程的定義是解本題的關(guān)鍵.3、A【分析】根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:由表可知16歲出現(xiàn)次數(shù)最多,所以眾數(shù)為16歲,因為共有1+2+2+3+1=9個數(shù)據(jù),所以中位數(shù)為第5個數(shù)據(jù),即中位數(shù)為15歲,故選:A.【點睛】本題考查了眾數(shù)及中位數(shù)的定義,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù).當(dāng)有奇數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置的數(shù);當(dāng)有偶數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置兩個數(shù)的平均數(shù).4、D【分析】先由題意列出第一輪傳染后患流感的人數(shù),再列出第二輪傳染后患流感的人數(shù),即可列出方程.【詳解】解:設(shè)每輪傳染中平均一個人傳染了x個人,

則第一輪傳染后患流感的人數(shù)是:1+x,

第二輪傳染后患流感的人數(shù)是:1+x+x(1+x),

因此可列方程,1+x+x(1+x)=1.

故選:D.【點睛】本題主要考查一元二次方程的應(yīng)用,找到等量關(guān)系是解題的關(guān)鍵.5、A【分析】可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進行解答.【詳解】二次函數(shù)向右平移個單位長度得,,再向上平移個單位長度得即故選A.【點睛】本題考查了二次函數(shù)的平移,熟練掌握平移規(guī)律是解題的關(guān)鍵.6、B【分析】由關(guān)于原點對稱的兩個點的坐標(biāo)之間的關(guān)系直接得出a、b的值即可.【詳解】∵點A(1,a)、點B(b,2)關(guān)于原點對稱,∴a=﹣2,b=﹣1,∴a+b=﹣3.故選B.【點睛】關(guān)于原點對稱的兩個點,它們的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)也互為相反數(shù).7、A【詳解】考點:中心對稱圖形.分析:根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.解:A.旋轉(zhuǎn)180°,與原圖形能夠完全重合是中心對稱圖形;故此選項正確;B.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;故選A.8、D【分析】欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標(biāo)軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,

則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故選D.9、A【分析】先求出兩個二次函數(shù)的頂點坐標(biāo),然后根據(jù)頂點坐標(biāo)即可判斷對稱或平移的方式.【詳解】的頂點坐標(biāo)為的頂點坐標(biāo)為∴點先關(guān)于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度可得到點故選A【點睛】本題主要考查二次函數(shù)圖象的平移,掌握二次函數(shù)圖象的平移規(guī)律是解題的關(guān)鍵.10、C【解析】可根據(jù)平行投影的特點分析求解,或根據(jù)常識直接確定答案.解:根據(jù)題意:影子在物體的東方,根據(jù)北半球,從早晨到傍晚影子的指向是:西-西北-北-東北-東,可得應(yīng)該是下午.故選C.本題考查了平行投影的特點和規(guī)律.在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,就北半球而言,從早晨到傍晚影子的指向是:西-西北-北-東北-東,影長由長變短,再變長.二、填空題(每小題3分,共24分)11、28【分析】先根據(jù)完全平方公式把變形,然后把,代入計算即可.【詳解】∵,,∴(a+b)2-2ab=36-8=28.故答案為:28.【點睛】本題考查了完全平方公式的變形求值,熟練掌握完全平方公式(a±b)2=a2±2ab+b2是解答本題的關(guān)鍵.12、【分析】將點(1,3)代入y即可求出k+1的值,再根據(jù)k+1=xy解答即可.【詳解】∵反比例函數(shù)的圖象上有一點(1,3),∴k+1=1×3=6,又點(-3,n)在反比例函數(shù)的圖象上,∴6=-3×n,解得:n=-1.故答案為:-1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.13、1【分析】直接把點(2,5)代入反比例函數(shù)求出k的值即可.【詳解】∵點(2,5)在反比例函數(shù)的圖象上,∴5=,解得k=1.故答案為:1.【點睛】此題考查求反比例函數(shù)的解析式,利用待定系數(shù)法求函數(shù)的解析式.14、【分析】根據(jù)弧長的公式列式計算即可.【詳解】∵一個扇形的半徑長為3,且圓心角為60°,

∴此扇形的弧長為=π.

故答案為:π.【點睛】此題考查弧長公式,熟記公式是解題關(guān)鍵.15、90°﹣α.【分析】首先連接OC,由圓周角定理,可求得∠BOC的度數(shù),又由等腰三角形的性質(zhì),即可求得∠OBC的度數(shù).【詳解】連接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案為:.【點睛】此題考查了圓周角定理與等腰三角形的性質(zhì).此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.16、【分析】連接AF延長AF交BC于G.設(shè)EF=CF=x,連接AF延長AF交BC于G.設(shè)EF=CF=x,因為BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°,可得在Rt△BCE中,由EC=2x,∠CBE=60°可得.由AE+BE=AB可得,代入即可解決問題.【詳解】解:連接延長交于,設(shè)==,是高,,,,,在中,,,,在中,,,,,,,.【點睛】本題考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解題的關(guān)鍵.17、1【分析】根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=-3、x1x2=-1,將其代入x12+x22=(x1+x2)2-2x1x2中即可求出結(jié)論.【詳解】解:∵x1,x2是方程的兩個實數(shù)根,

∴x1+x2=-3,x1x2=-1,

∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.

故答案為:1.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.18、【解析】分解因式的方法為提公因式法和公式法及分組分解法.原式==a(3+a)(3-a).三、解答題(共66分)19、1【解析】試題分析:首先理解題意,先把實際問題轉(zhuǎn)化成數(shù)學(xué)問題后,知道解此題就是求出h=10t﹣5t2的頂點坐標(biāo)即可.解:h=﹣5t2+10t,=﹣5(t2﹣6t+9)+45,=﹣5(t﹣1)2+45,∵a=﹣5<0,∴圖象的開口向下,有最大值,當(dāng)t=1時,h最大值=45;即小球拋出1秒后達到最高點.故答案為1.20、(1)P(摸出白球)=;(2)這個游戲規(guī)則對雙方不公平.【分析】(1)根據(jù)A袋中共有3個球,其中2個是白球,直接利用概率公式求解即可;(2)列表得到所有等可能的結(jié)果,然后分別求出小林獲勝和小華獲勝的概率進行比較即可.【詳解】(1)A袋中共有3個球,其中有2個白球,∴P(摸出白球)=;(2)根據(jù)題意,列表如下:紅1紅2白白1(白1,紅1)(白1,紅2)(白1,白)白2(白2,紅1)(白2,紅2)(白2,白)紅(紅,紅1)(紅,紅2)(紅,白)由上表可知,共有9種等可能結(jié)果,其中顏色相同的結(jié)果有4種,顏色不同的結(jié)果有5種,∴P(顏色相同)=,P(顏色不同)=,∵<,∴這個游戲規(guī)則對雙方不公平.【點睛】本題考查了列表法或樹狀圖法求概率,判斷游戲的公平性,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結(jié)合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結(jié)合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【點睛】本題是圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質(zhì)及直角三角形的性質(zhì)等知識點.22、(1)2;(2)見解析;(3)存在,QP的值為或8或.【分析】(1)利用勾股定理求出AC,設(shè)HQ=x,根據(jù)構(gòu)建方程即可解決問題;(2)利用對折與平行線的性質(zhì)證明四邊相等即可解決問題;(3)設(shè)AE=EM=FM=AF=2m,則BM=3m,F(xiàn)B=5m,構(gòu)建方程求出m的值,分兩種情形分別求解即可解決問題.【詳解】解:(1)如圖1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,設(shè)HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由對折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍棄),∴HQ=2,故答案為2.(2)如圖2中,由翻折不變性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四邊形AEMF是菱形.(3)如圖3中,設(shè)AE=EM=FM=AF=2m,則BM=3m,F(xiàn)B=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,設(shè)PQ=x,當(dāng)=時,,∴解得:,當(dāng)=時,,∴解得:x=8或,經(jīng)檢驗:x=8或是分式方程的解,且符合題意,綜上所述,滿足條件長QP的值為或8或.【點睛】本題考查的是三角形相似的判定與性質(zhì),菱形的判定與性質(zhì),軸對稱的性質(zhì),銳角三角函數(shù)的應(yīng)用,掌握以上知識是解題的關(guān)鍵.23、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②點M的坐標(biāo)為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根據(jù)已知求點A的坐標(biāo),利用待定系數(shù)法求二次函數(shù)的解析式;(2)①先得AB的解析式為:y=-2x+2,根據(jù)PD⊥x軸,設(shè)P(x,-x2-3x+4),則E(x,-2x+2),根據(jù)PE=DE,列方程可得P的坐標(biāo);②先設(shè)點M的坐標(biāo),根據(jù)兩點距離公式可得AB,AM,BM的長,分三種情況:△ABM為直角三角形時,分別以A、B、M為直角頂點時,利用勾股定理列方程可得點M的坐標(biāo).【詳解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式為:y=﹣2x+2,設(shè)P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直線PD上,且P(﹣1,6),設(shè)M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三種情況:i)當(dāng)∠AMB=90°時,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)當(dāng)∠ABM=90°時,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)當(dāng)∠BAM=90°時,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);綜上所述,點M的坐標(biāo)為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【點睛】此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,鉛直高度和勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關(guān)鍵是注意方程思想與分類討論思想的應(yīng)用.24、(1);(2)10元;(3)x為12時,日銷售利潤最大,最大利潤960元【分析】(1)根據(jù)題意得到函數(shù)解析式;(2)根據(jù)題意列方程,解方程即可得到結(jié)論;(3)根據(jù)題意得到,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意得,,故y與x的函數(shù)關(guān)系式為;(2)根據(jù)題意得,,解得:,(不合題意舍去),答:要使日銷售利潤為720元,銷售單價應(yīng)定為10元;(3)根據(jù)題意得,,,∴當(dāng)時,w隨x的增大而增大,當(dāng)時,,答:當(dāng)x為12時,日銷售利潤最大,最大利潤960元.【點睛】此題考查了一元二次方程和二次函數(shù)的運用,利用總利潤=單個利潤×銷售數(shù)量建立函數(shù)關(guān)系式,進一步利用性質(zhì)的解決問題,解答時求出二次函數(shù)的解析式是關(guān)鍵.25、(1)(1)AC與⊙O相切,證明見解析;(2)⊙O半徑是.【解析】試題分析:(1)連結(jié)OE,如圖,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,則∠OBE=∠DBO,于是可判斷OE∥BD,再利用等腰三角形的性質(zhì)得到BD⊥AC,所以O(shè)E⊥AC,于是根據(jù)切線的判定定理可得AC與⊙O相切;(2)設(shè)⊙O半徑為r,則AO=10﹣r,證明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.試題解析:(1)AC與⊙O相切.理由如下:連結(jié)OE,如圖,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中點,∴BD⊥AC,∴OE⊥AC,∴AC與⊙O相切;(2)設(shè)⊙O半徑為r,則AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴,即,∴r=,即⊙O半徑是.考點:圓切線的判定:相似經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.解決(2)小題的關(guān)鍵是利用相似比構(gòu)建方程.26、(1)(1,0),E、D、;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論