2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省嘉興市南湖區(qū)實驗九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如果,那么=()A. B. C. D.2.拋物線y=ax2+bx+c(a≠0)形狀如圖,下列結(jié)論:①b>0;②a﹣b+c=0;③當x<﹣1或x>3時,y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有兩個不相等的實數(shù)根.正確的有()A.4個 B.3個 C.2個 D.1個3.sin45°的值等于()A.12 B.22 C.34.如圖,周長為28的菱形中,對角線、交于點,為邊中點,的長等于()A.3.5 B.4 C.7 D.145.二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:x…0134…y…242﹣2…則下列判斷中正確的是()A.拋物線開口向上 B.拋物線與y軸交于負半軸C.當x=﹣1時y>0 D.方程ax2+bx+c=0的負根在0與﹣1之間6.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°7.如圖,,垂足為點,,,則的度數(shù)為()A. B. C. D.8.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達式為()A. B. C. D.9.在△ABC中,∠C=90°,則下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=10.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)二、填空題(每小題3分,共24分)11.如圖等邊三角形內(nèi)接于,若的半徑為1,則圖中陰影部分的面積等于_________.12.在直角坐標系中,點(﹣1,2)關(guān)于原點對稱點的坐標是_____.13.如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.14.將二次函數(shù)的圖像向下平移個單位后,它的頂點恰好落在軸上,那么的值等于__________.15.如圖一次函數(shù)的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)的圖象于Q,,則Q點的坐標為_____________16.如圖,由邊長為1的小正方形組成的網(wǎng)格中,點為格點(即小正方形的頂點),與相交于點,則的長為_________.17.如圖,已知射線,點從B點出發(fā),以每秒1個單位長度沿射線向右運動;同時射線繞點順時針旋轉(zhuǎn)一周,當射線停止運動時,點隨之停止運動.以為圓心,1個單位長度為半徑畫圓,若運動兩秒后,射線與恰好有且只有一個公共點,則射線旋轉(zhuǎn)的速度為每秒______度.18.如圖,已知點A在反比例函數(shù)圖象上,AC⊥y軸于點C,點B在x軸的負半軸上,且△ABC的面積為3,則該反比例函數(shù)的表達式為__.三、解答題(共66分)19.(10分)我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.20.(6分)已知反比例函數(shù)的圖象過點P(-1,3),求m的值和該反比例函數(shù)的表達式.21.(6分)有A、B兩組卡片共1張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,1.它們除了數(shù)字外沒有任何區(qū)別,(1)隨機從A組抽取一張,求抽到數(shù)字為2的概率;(2)隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?22.(8分)如圖,在平行四邊形中,(1)求與的周長之比;(2)若求.23.(8分)已知x2﹣8x+16﹣m2=0(m≠0)是關(guān)于x的一元二次方程(1)證明:此方程總有兩個不相等的實數(shù)根;(2)若等腰△ABC的一邊長a=6,另兩邊長b、c是該方程的兩個實數(shù)根,求△ABC的面積.24.(8分)如圖,是⊙的直徑,是⊙的切線,點為切點,與⊙交于點,點是的中點,連結(jié).(1)求證:是⊙的切線;(2)若,,求陰影部分的面積.25.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-2,3),B(-4,1),C(-1,2).(1)畫出以點O為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A'B'C'(2)求點C在旋轉(zhuǎn)過程中所經(jīng)過的路徑的長.26.(10分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.(1)求反比例函數(shù)的表達式;(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】直接利用已知進行變形進而得出結(jié)果.【詳解】解:∵,∴3x+3y=5x,則3y=2x,那么=.故選:D.【點睛】本題考查了比例的性質(zhì),正確將已知變形是解題的關(guān)鍵.2、B【分析】根據(jù)拋物線的開口方向、對稱軸、頂點坐標和增減性,以及二次函數(shù)與一元二次方程的關(guān)系逐個進行判斷即可.【詳解】解:由拋物線開口向上,可知a>1,對稱軸偏在y軸的右側(cè),a、b異號,b<1,因此①不符合題意;由對稱軸為x=1,拋物線與x軸的一個交點為(3,1),可知與x軸另一個交點為(﹣1,1),代入得a﹣b+c=1,因此②符合題意;由圖象可知,當x<﹣1或x>3時,圖象位于x軸的上方,即y>1.因此③符合題意;拋物線與y=﹣1一定有兩個交點,即一元二次方程ax2+bx+c+1=1(a≠1)有兩個不相等的實數(shù)根,因此④符合題意;綜上,正確的有3個,故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì)和二次函數(shù)同一元二次方程的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握二次函數(shù)的性質(zhì).3、B【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】sin45°=22故選B.【點睛】錯因分析:容易題.失分的原因是沒有掌握特殊角的三角函數(shù)值.4、A【解析】根據(jù)菱形的周長求出其邊長,再根據(jù)菱形的性質(zhì)得出對角線互相垂直,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】∵四邊形是菱形,周長為28∴AB=7,AC⊥BD∴OH=故選:A【點睛】本題考查的是菱形的性質(zhì)及直角三角形斜邊上的中線等于斜邊的一半,熟練掌握菱形的性質(zhì)是關(guān)鍵.5、D【分析】根據(jù)表中的對應(yīng)值,求出二次函數(shù)的表達式即可求解.【詳解】解:選取,,三點分別代入得解得:∴二次函數(shù)表達式為∵,拋物線開口向下;∴選項A錯誤;∵函數(shù)圖象與的正半軸相交;∴選項B錯誤;當x=-1時,;∴選項C錯誤;令,得,解得:,∵,方程的負根在0與-1之間;故選:D.【點睛】本題考查二次函數(shù)圖象與性質(zhì),掌握性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.6、B【解析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).7、B【解析】由平行線的性質(zhì)可得,繼而根據(jù)垂直的定義即可求得答案.【詳解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故選B.【點睛】本題考查了垂線的定義,平行線的性質(zhì),熟練掌握相關(guān)知識是解題的關(guān)鍵.8、A【分析】根據(jù)待定系數(shù)法求解即可.【詳解】解:設(shè)函數(shù)的解析式是y=kx,根據(jù)題意得:2k=﹣3,解得:k=﹣.故函數(shù)的解析式是:y=﹣x.故選:A.【點睛】本題考查了利用待定系數(shù)法求正比例函數(shù)的解析式,屬于基礎(chǔ)題型,熟練掌握待定系數(shù)法求解的方法是解題關(guān)鍵.9、B【解析】分析:根據(jù)題意畫出圖形,進而分析得出答案.詳解:如圖所示:sinA=.故選B.點睛:本題主要考查了銳角三角函數(shù)的定義,正確記憶邊角關(guān)系是解題的關(guān)鍵.10、D【分析】根據(jù)反比例函數(shù)圖象和性質(zhì)即可解答.先判斷出反比例函數(shù)圖象的一分支所在象限,即可得到另一分支所在象限.【詳解】解:由于點(1,2)在第一象限,則反比例函數(shù)的一支在第一象限,另一支必過第三象限.第三象限內(nèi)點的坐標符號為(﹣,﹣)故選:D.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)圖像的對稱性.二、填空題(每小題3分,共24分)11、【分析】如圖(見解析),連接OC,根據(jù)圓的內(nèi)接三角形和等邊三角形的性質(zhì)可得,的面積等于的面積、以及的度數(shù),從而可得陰影部分的面積等于鈍角對應(yīng)的扇形面積.【詳解】如圖,連接OC由圓的內(nèi)接三角形得,點O為垂直平分線的交點又因是等邊三角形,則其垂直平分線的交點與角平分線的交點重合,且點O到AB和AC的距離相等則故答案為:.【點睛】本題考查了圓的內(nèi)接三角形的性質(zhì)、等邊三角形的性質(zhì)、扇形面積公式,根據(jù)等邊三角形的性質(zhì)得出的面積等于的面積是解題關(guān)鍵.12、(1,﹣2)【分析】根據(jù)平面直角坐標系中任意一點P(x,y),關(guān)于原點的對稱點是(﹣x,﹣y),可得答案.【詳解】解:在直角坐標系中,點(﹣1,2)關(guān)于原點對稱點的坐標是(1,﹣2),故答案為(1,﹣2).【點睛】本題考查了關(guān)于原點對稱的點的坐標,關(guān)于原點的對稱點,橫縱坐標都變成相反數(shù).13、【分析】由旋轉(zhuǎn)的性質(zhì)可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉(zhuǎn)化為求兩個特殊三角形的面積即可.【詳解】解:連接PQ,由旋轉(zhuǎn)的性質(zhì)可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等邊三角形,∴PQ=BP,在等邊三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ與△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因為,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案為:【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定、勾股定理的逆定理及特殊三角形的面積,解題的關(guān)鍵是作出輔助線,轉(zhuǎn)化為特殊三角形進行求解.14、1【分析】利用平移的性質(zhì)得出平移后解析式,進而得出其頂點坐標,再代入直線y=0求出即可.【詳解】y=x2-2x+2=(x-1)2+1,

∴將拋物線y=x2-2x+2沿y軸向下平移1個單位,使平移后的拋物線的頂點恰好落在x軸上,

∴m=1,

故答案為:1.【點睛】此題考查二次函數(shù)的性質(zhì),二次函數(shù)的平移,正確記憶二次函數(shù)平移規(guī)律是解題關(guān)鍵.15、(2,)【解析】因為三角形OQC的面積是Q點的橫縱坐標乘積的一半,所以可求出k的值,PC為中位線,可求出C的橫坐標,也是Q的橫坐標,代入反比例函數(shù)可求出縱坐標【詳解】解:設(shè)A點的坐標為(a,0),B點坐標為(0,b),

分別代入,解方程得a=4,b=-2,

∴A(4,0),B(0,-2)∵PC是△AOB的中位線,

∴PC⊥x軸,即QC⊥OC,

又Q在反比例函數(shù)的圖象上,

∴2S△OQC=k,

∴k=2×=3,

∵PC是△AOB的中位線,

∴C(2,0),

可設(shè)Q(2,q)∵Q在反比例函數(shù)的圖象上,

∴q=,

∴點Q的坐標為(2

,

).點睛:本題考查反比例函數(shù)的綜合運用,關(guān)鍵是知道函數(shù)上面取點后所得的三角函數(shù)的面積和點的坐標之間的關(guān)系.16、【分析】如圖所示,由網(wǎng)格的特點易得△CEF≌△DBF,從而可得BF的長,易證△BOF∽△AOD,從而可得AO與AB的關(guān)系,然后根據(jù)勾股定理可求出AB的長,進而可得答案.【詳解】解:如圖所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案為:【點睛】本題以網(wǎng)格為載體,考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理等知識,屬于??碱}型,熟練掌握上述基本知識是解答的關(guān)鍵.17、30或60【分析】射線與恰好有且只有一個公共點就是射線與相切,分兩種情況畫出圖形,利用圓的切線的性質(zhì)和30°角的直角三角形的性質(zhì)求出旋轉(zhuǎn)角,然后根據(jù)旋轉(zhuǎn)速度=旋轉(zhuǎn)的度數(shù)÷時間即得答案.【詳解】解:如圖1,當射線與在射線BA上方相切時,符合題意,設(shè)切點為C,連接OC,則OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此時射線旋轉(zhuǎn)的速度為每秒60°÷2=30°;如圖2,當射線與在射線BA下方相切時,也符合題意,設(shè)切點為D,連接OD,則OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此時射線旋轉(zhuǎn)的速度為每秒120°÷2=60°;故答案為:30或60.【點睛】本題考查了圓的切線的性質(zhì)、30°角的直角三角形的性質(zhì)和旋轉(zhuǎn)的有關(guān)概念,正確理解題意、熟練掌握基本知識是解題的關(guān)鍵.18、y=﹣【解析】根據(jù)同底等高的兩個三角形面積相等,可得△AOC的面積=△ABC的面積=3,再根據(jù)反比例函數(shù)中k的幾何意義,即可確定k的值,進而得出反比例函數(shù)的解析式.【詳解】解:如圖,連接AO,設(shè)反比例函數(shù)的解析式為y=.∵AC⊥y軸于點C,∴AC∥BO,∴△AOC的面積=△ABC的面積=3,又∵△AOC的面積=|k|,∴|k|=3,∴k=±2;又∵反比例函數(shù)的圖象的一支位于第二象限,∴k<1.∴k=﹣2.∴這個反比例函數(shù)的解析式為y=﹣.故答案為y=﹣.【點睛】本題考查待定系數(shù)法求反比例函數(shù)的解析式和反比例函數(shù)中k的幾何意義.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.三、解答題(共66分)19、(1)10,6;(2)見解析;(3).【分析】(1)根據(jù)“十字弦”定義可得弦的“十字弦”為直徑時最大,當CD過A點或B點時最小;(2)根據(jù)線段長度得出對應(yīng)邊成比例且有夾角相等,證明△ACH∽△DCA,由其性質(zhì)得出對應(yīng)角相等,結(jié)合90°的圓周角證出AH⊥CD,根據(jù)“十字弦”定義可得;(3)過O作OE⊥AB于點E,作OF⊥CD于點F,利用垂徑定理得出OE=3,由正切函數(shù)得出AH=DH,設(shè)DH=x,在Rt△ODF中,利用線段和差將邊長用x表示,根據(jù)勾股定理列方程求解.【詳解】解:(1)當CD為直徑時,CD最大,此時CD=10,∴弦的“十字弦”的最大值為10;當CD過A點時,CD長最小,即AM的長度,過O點作ON⊥AM,垂足為N,作OG⊥AB,垂足為G,則四邊形AGON為矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)證明:如圖,連接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直徑,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互為“十字弦”.(3)如圖,過O作OE⊥AB于點E,作OF⊥CD于點F,連接OA,OD,則四邊形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,設(shè)DH=,則AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【點睛】本題考查圓的相關(guān)性質(zhì),利用垂徑定理,相似三角形等知識是解決圓問題的常用手段,對結(jié)合學(xué)過的知識和方法的基礎(chǔ)上,用新的方法和思路來解決新題型或新定義的能力是解答此題的關(guān)鍵.20、2;.【分析】把點P的坐標代入函數(shù)解析式求得m的值即可【詳解】解:把點P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函數(shù)的表達式為.【點睛】本題考查了待定系數(shù)法確定函數(shù)關(guān)系式,反比例函數(shù)圖象上點的坐標特征.難度不大,熟悉函數(shù)圖象的性質(zhì)即可解題.21、(1)P(抽到數(shù)字為2)=;(2)不公平,理由見解析.【解析】試題分析:(1)根據(jù)概率的定義列式即可;(2)畫出樹狀圖,然后根據(jù)概率的意義分別求出甲、乙獲勝的概率,從而得解.試題解析:(1)P=;(2)由題意畫出樹狀圖如下:一共有6種情況,甲獲勝的情況有4種,P=,乙獲勝的情況有2種,P=,所以,這樣的游戲規(guī)則對甲乙雙方不公平.考點:游戲公平性;列表法與樹狀圖法.22、(1)與周長的比等于相似比等于;(2).【分析】(1)根據(jù)平行四邊形對邊平行,得到兩個三角形相似,根據(jù)兩個三角形相似,得到△AEF與△CDF的周長比等于對應(yīng)邊長之比,做出兩個三角形的邊長之比,可得△AEF與△CDF的周長比;(2)利用兩個三角形的面積之比等于邊長之比的平方,利用兩個三角形的邊長之比,根據(jù)△AEF的面積等于6cm2,得到要求的三角形的面積.【詳解】解:由得,又是平行四邊形,由得所以與周長的比等于相似比等于.由由解得.【點睛】本題考查三角形相似的性質(zhì),兩個三角形相似,對應(yīng)的高線,中線和角平分線之比等于邊長之比,兩個三角形的面積之比等于邊長比的平方,這種性質(zhì)用的比較多.23、(1)證明見解析;(2)△ABC的面積為.【分析】(1)計算判別式的值得到△=4m2,從而得到△>0,然后根據(jù)判別式的意義得到結(jié)論;(2)利用求根公式解方程得到x=4±m(xù),即b=4+m,c=4﹣m,討論:當b=a=6時,即4+m=6,解得m=2,利用勾股定理計算出底邊上的高,然后計算△ABC的面積;當c=a時,即4﹣m=6,解得m=﹣2,即a=c=6,b=2,利用同樣方法計算△ABC的面積.【詳解】(1)證明:△=(﹣8)2﹣4×(16﹣m2)=4m2,∵m≠0,∴m2>0,∴△>0,∴此方程總有兩個不相等的實數(shù)根;(2)解:∵∴,即b=4+m,c=4﹣m,∵m≠0∴b≠c當b=a時,4+m=6,解得m=2,即a=b=6,c=2,如圖,AB=AC=6,BC=2,AD為高,則BD=CD=1,∴∴△ABC的面積為:×2×=;當c=a時,4﹣m=6,解得m=﹣2,即a=c=6,b=2,如圖,AB=AC=6,BC=2,AD為高,則BD=CD=1,∴∴△ABC的面積為:×2×=,即△ABC的面積為.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:①當△>0,方程有兩個不相等的實數(shù)根;②當△=0,方程有兩個相等的實數(shù)根;③當△<0,方程沒有實數(shù)根.也考查了三角形三邊的關(guān)系.24、(1)見解析;(2).【解析】(1)連結(jié)OC,AC,由切線性質(zhì)知Rt△ACP中DC=DA,即∠DAC=∠DCA,再結(jié)合∠OAC=∠OCA知∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,據(jù)此即可得證;

(2)先求出OA=1,BP=2AB=4,AD=,再根據(jù)S陰影=S四邊形OADC-S扇形AOC即可得.【詳解】(1)連結(jié),如圖所示:∵是⊙的直徑,是切線,∴,,∵點是的中點,∴,∴,又∵,∴,∴,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論