內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷含解析_第1頁
內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷含解析_第2頁
內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷含解析_第3頁
內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷含解析_第4頁
內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古和林格爾縣重點中學2024屆中考數(shù)學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.42.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.3.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對4.如圖,動點P從(0,3)出發(fā),沿所示方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角.當點P第2018次碰到矩形的邊時,點P的坐標為()A.(1,4) B.(7,4) C.(6,4) D.(8,3)5.一次函數(shù)與的圖象如圖所示,給出下列結(jié)論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個6.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)7.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長為()A.3 B.4 C.6 D.88.在海南建省辦經(jīng)濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿(mào)區(qū)(港),引發(fā)全球高度關(guān)注.據(jù)統(tǒng)計,4月份互聯(lián)網(wǎng)信息中提及“海南”一詞的次數(shù)約48500000次,數(shù)據(jù)48500000科學記數(shù)法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1089.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.10.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠111.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.2212.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在數(shù)軸上與所對應的點相距4個單位長度的點表示的數(shù)是______.14.因式分解:__________.15.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內(nèi),且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.16.如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標為_____.17.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.18.當時,直線與拋物線有交點,則a的取值范圍是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.20.(6分)在平面直角坐標系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.21.(6分)如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.(1)求證:PM∥AD;(2)若∠BAP=2∠M,求證:PA是⊙O的切線;(3)若AD=6,tan∠M=,求⊙O的直徑.22.(8分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).23.(8分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).24.(10分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數(shù).25.(10分)由我國完全自主設計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.26.(12分)如圖,在平面直角坐標系xOy中,每個小正方形的邊長都為1,和的頂點都在格點上,回答下列問題:可以看作是經(jīng)過若干次圖形的變化平移、軸對稱、旋轉(zhuǎn)得到的,寫出一種由得到的過程:______;畫出繞點B逆時針旋轉(zhuǎn)的圖形;在中,點C所形成的路徑的長度為______.27.(12分)小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關(guān)鍵是掌握整體代入法.2、D【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】解:根據(jù)軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.

故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形3、A【解析】

由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【解析】如圖,經(jīng)過6次反彈后動點回到出發(fā)點(0,3),∵2018÷6=336…2,∴當點P第2018次碰到矩形的邊時為第336個循環(huán)組的第2次反彈,點P的坐標為(7,4).故選C.5、B【解析】

仔細觀察圖象,①k的正負看函數(shù)圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數(shù)圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數(shù)圖象在上面,則哪個函數(shù)值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數(shù)性質(zhì)的應用.正確理解一次函數(shù)的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.6、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質(zhì),坐標與圖形的性質(zhì),勾股定理,正確的識別圖形是解題關(guān)鍵.7、D【解析】

連接OA,構(gòu)建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長度,從而求得AB=2AD=1.【詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據(jù)勾股定理,得AD==4,∴AB=1.故選D.【點睛】本題考查了垂徑定理、勾股定理.解答該題的關(guān)鍵是通過作輔助線OA構(gòu)建直角三角形,在直角三角形中利用勾股定理求相關(guān)線段的長度.8、C【解析】

依據(jù)科學記數(shù)法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數(shù)M記成a×11n(1≤|a|<11,n為整數(shù))的形式,這種記數(shù)的方法叫做科學記數(shù)法.規(guī)律:(1)當|a|≥1時,n的值為a的整數(shù)位數(shù)減1;(2)當|a|<1時,n的值是第一個不是1的數(shù)字前1的個數(shù),包括整數(shù)位上的1.9、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數(shù)依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.10、A【解析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內(nèi)有意義,必須且.故選A.11、B【解析】

直接利用平行四邊形的性質(zhì)得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質(zhì)掌握要熟練,找到等值代換即可求解.12、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2或﹣1【解析】解:當該點在﹣2的右邊時,由題意可知:該點所表示的數(shù)為2,當該點在﹣2的左邊時,由題意可知:該點所表示的數(shù)為﹣1.故答案為2或﹣1.點睛:本題考查數(shù)軸,涉及有理數(shù)的加減運算、分類討論的思想.14、【解析】

先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:原式,故答案為:【點睛】本題考查提公因式,熟練掌握運算法則是解題關(guān)鍵.15、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關(guān)鍵.16、【解析】

如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.17、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.18、【解析】

直線與拋物線有交點,則可化為一元二次方程組利用根的判別式進行計算.【詳解】解:法一:與拋物線有交點則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點,∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點睛】考查二次函數(shù)圖象的性質(zhì)及交點的問題,此類問題,通??苫癁橐辉畏匠?,利用根的判別式或根與系數(shù)的關(guān)系進行計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據(jù)相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據(jù)同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據(jù)相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數(shù),則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質(zhì),圓的切線的性質(zhì),圓周角的性質(zhì)以及三角函數(shù)的性質(zhì)等知識.此題綜合性很強,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應用.20、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】

(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數(shù)解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點A在圖象上∴∴a=3∴A(3,1)∵點A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設直線y=x-2與x軸的交點為D∴D(2,0)①當點C在點A的上方如圖(1)∵直線y=-x+m與x軸交點為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點C在點A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點睛】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,三角形的面積,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、(1)證明見解析;(2)證明見解析;(3)1;【解析】

(1)根據(jù)平行線的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據(jù)切線的判定得出即可;(3)設BC=x,CM=2x,根據(jù)相似三角形的性質(zhì)和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根據(jù)三角形的中位線性質(zhì)得出0.71x=AD=3,求出x即可.【詳解】(1)∵BD是直徑,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)連接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半徑,∴PA是⊙O的切線;(3)連接BN,則∠MBN=90°.∵tan∠M=,∴=,設BC=x,CM=2x,∵MN是⊙O直徑,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.1x,∴OM=MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中點,C是AB的中點,AD=6,∴OC=0.71x=AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半徑為1.【點睛】本題考查了圓周角定理,切線的性質(zhì)和判定,相似三角形的性質(zhì)和判定等知識點,能靈活運用知識點進行推理是解此題的關(guān)鍵,此題有一定的難度.22、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項人數(shù)所占百分比求得其人數(shù),據(jù)此補全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項的人數(shù)為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?3、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.24、1米.【解析】試題分析:根據(jù)題意可以列出相應的分式方程,然后解分式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論