版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個布袋里裝有2個紅球、3個黃球和5個白球,除顏色外其它都相同,攪勻后任意摸出一個球,是白球的概率為()A. B. C. D.2.如圖,把一個直角三角板△ACB繞著30°角的頂點B順時針旋轉(zhuǎn),使得點A與CB的延長線上的點E重合,連接CD,則∠BDC的度數(shù)為()A.15° B.20° C.25° D.30°3.如圖,在蓮花山滑雪場滑雪,需從山腳下乘纜車上山,纜車索道與水平線所成的角為,纜車速度為每分鐘米,從山腳下到達山頂纜車需要分鐘,則山的高度為()米.A. B.C. D.4.在正方形、矩形、菱形、平行四邊形中,其中是中心對稱圖形的個數(shù)為()A. B. C. D.5.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤6.二次函數(shù)y=ax2+bx+4(a≠0)中,若b2=4a,則()A.y最大=5 B.y最?。? C.y最大=3 D.y最?。?7.己知a、b、c均不為0,且,若,則k=()A.-1 B.0 C.2 D.38.對于方程,下列說法正確的是()A.一次項系數(shù)為3 B.一次項系數(shù)為-3C.常數(shù)項是3 D.方程的解為9.二次函數(shù)(,,為常數(shù),且)中的與的部分對應(yīng)值如下表:以下結(jié)論:①二次函數(shù)有最小值為;②當時,隨的增大而增大;③二次函數(shù)的圖象與軸只有一個交點;④當時,.其中正確的結(jié)論有()個A. B. C. D.10.如圖,點B、D、C是⊙O上的點,∠BDC=130°,則∠BOC是()A.100° B.110° C.120° D.130°11.如圖,在Rt△ABC中,∠BAC=90°,將Rt△ABC繞點C按逆時針方向旋轉(zhuǎn)42°得到Rt△A'B'C',點A在邊B'C上,則∠B'的大小為()A.42° B.48° C.52° D.58°12.兩個相似三角形的面積比是9:16,則這兩個三角形的相似比是()A.9︰16 B.3︰4 C.9︰4 D.3︰16二、填空題(每題4分,共24分)13.菱形邊長為4,,點為邊的中點,點為上一動點,連接、,并將沿翻折得,連接,取的中點為,連接,則的最小值為_____.14.如圖,是的切線,為切點,連接.若,則=__________.15.某市為提倡居民節(jié)約用水,自今年1月1日起調(diào)整居民用水價格.圖中、分別表示去年、今年水費(元)與用水量()之間的關(guān)系.小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多_____元.16.如圖,與正五邊形ABCDE的邊AB、DE分別相切于點B、D,則劣弧所對的圓心角的大小為_____度.17.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.18.如圖,中,,,,是上一個動點,以為直徑的⊙交于,則線段長的最小值是_________.三、解答題(共78分)19.(8分)如圖,一次函數(shù)的圖象分別交x軸、y軸于C,D兩點,交反比例函數(shù)圖象于A(,4),B(3,m)兩點.(1)求直線CD的表達式;(2)點E是線段OD上一點,若,求E點的坐標;(3)請你根據(jù)圖象直接寫出不等式的解集.20.(8分)如圖,某測量工作人員與標桿頂端F、電視塔頂端在同一直線上,已知此人眼睛距地面1.5米,標桿為3米,且BC=1米,CD=6米,求電視塔的高ED.21.(8分)如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側(cè),并表示出點A1的坐標.(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).22.(10分)如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;(2)畫出△A1B1C1繞原點順時針旋90°后得到的△A2B2C2;(3)若△A′B′C′與△ABC是中心對稱圖形,則對稱中心的坐標為.23.(10分)如圖,已知直線y=x+3與x軸、y軸分別交于點A、B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.(1)求拋物線的解析式和頂點坐標;(2)在第三象限內(nèi)的拋物線上是否存在一點F,使A、E、C、F為頂點的四邊形面積為6?若存在,直接寫出點F的坐標;若不存在,說明理由.24.(10分)已知關(guān)于x的方程(1)求證:方程總有兩個實數(shù)根(2)若方程有一個小于1的正根,求實數(shù)k的取值范圍25.(12分)感知定義在一次數(shù)學(xué)活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.①證明△ABD是“類直角三角形”;②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.類比拓展(2)如圖2,△ABD內(nèi)接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結(jié)AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.26.如圖,在中,,,于點,是上的點,于點,,交于點.(1)求證:;(2)當?shù)拿娣e最大時,求的長.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)概率公式解答即可.【詳解】袋子里裝有2個紅球、3個黃球和5個白球共10個球,從中摸出一個球是白球的概率為:.故選A.【點睛】本題考查了隨機事件概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.2、A【分析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得出△ABC≌△EBD,可得出BC=BD,根據(jù)圖形旋轉(zhuǎn)的性質(zhì)求出∠EBD的度數(shù),再由等腰三角形的性質(zhì)即可得出∠BDC的度數(shù).【詳解】∵△EBD由△ABC旋轉(zhuǎn)而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故選:A.【點睛】本題考查的是旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì),熟知圖形旋轉(zhuǎn)不變性的性質(zhì)是解答此題的關(guān)鍵.3、C【分析】在中,利用∠BAC的正弦解答即可.【詳解】解:在中,,,(米),∵,(米).故選.【點睛】本題考查了三角函數(shù)的應(yīng)用,屬于基礎(chǔ)題型,熟練掌握三角函數(shù)的定義是解題的關(guān)鍵.4、D【解析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可直接選出答案.【詳解】在正方形、矩形、菱形、平行四邊形中,其中都是中心對稱圖形,故共有個中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形,正確掌握中心對稱圖形的性質(zhì)是解題的關(guān)鍵.5、D【解析】根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.6、D【分析】根據(jù)題意得到y(tǒng)=ax2+bx+4=,代入頂點公式即可求得.【詳解】解:∵b2=4a,∴,∴∵,∴y最小值=,故選:D.【點睛】本題考查了二次函數(shù)最值問題,解決本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì),準確表達出二次函數(shù)的頂點坐標.7、D【解析】分別用含有k的代數(shù)式表示出2b+c,2c+a,2a+b,再相加即可求解.【詳解】∵∴,,三式相加得,∵∴k=3.故選D.【點睛】本題考查了比的性質(zhì),解題的關(guān)鍵是求得2b+c=ak,2c+a=bk,2a+b=ck.8、B【分析】先把方程化為一元二次方程的一般形式,再求出其一次項系數(shù)、二次項系數(shù)及常數(shù)項即可.【詳解】∵原方程可化為2x2?3x=0,∴一次項系數(shù)為?3,二次項系數(shù)為2,常數(shù)項為0,方程的解為x=0或x=,故選:B.【點睛】本題考查的是一元二次方程的一般形式,熟知一元二次方程ax2+bx+c=0(a≠0)中,ax2叫做二次項,a叫做二次項系數(shù);bx叫做一次項;c叫做常數(shù)項是解答此題的關(guān)鍵.9、B【分析】根據(jù)表中數(shù)據(jù),可獲取相關(guān)信息:拋物線的頂點坐標為(1,-4),開口向上,與x軸的兩個交點坐標是(-1,0)和(3,0),據(jù)此即可得到答案.【詳解】①由表格給出的數(shù)據(jù)可知(0,-3)和(2,-3)是一對對稱點,所以拋物線的對稱軸為=1,即頂點的橫坐標為x=1,所以當x=1時,函數(shù)取得最小值-4,故此選項正確;②由表格和①可知當x<1時,函數(shù)y隨x的增大而減少;故此選項錯誤;③由表格和①可知頂點坐標為(1,-4),開口向上,∴二次函數(shù)的圖象與x軸有兩個交點,一個是(-1,0),另一個是(3,0);故此選項錯誤;④函數(shù)圖象在x軸下方y(tǒng)<0,由表格和③可知,二次函數(shù)的圖象與x軸的兩個交點坐標是(-1,0)和(3,0),∴當時,y<0;故此選項正確;綜上:①④兩項正確,故選:B.【點睛】本題綜合性的考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是能根據(jù)二次函數(shù)的對稱性判斷:縱坐標相同兩個點的是一對對稱點.10、A【分析】首先在優(yōu)弧上取點E,連接BE,CE,由點B、D、C是⊙O上的點,∠BDC=130°,即可求得∠E的度數(shù),然后由圓周角定理,即可求得答案.【詳解】解:在優(yōu)弧上取點E,連接BE,CE,如圖所示:
∵∠BDC=130°,
∴∠E=180°-∠BDC=50°,
∴∠BOC=2∠E=100°.
故選A.【點睛】此題考查了圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.11、B【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形兩銳角互余求出∠B′=90°﹣∠ACA′=48°.【詳解】解:∵在Rt△ABC中,∠BAC=90°,將Rt△ABC繞點C按逆時針方向旋轉(zhuǎn)42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故選:B.【點睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知旋轉(zhuǎn)的性質(zhì).12、B【解析】試題分析:根據(jù)相似三角形中,面積比等于相似比的平方,即可得到結(jié)果.因為面積比是9:16,則相似比是3︰4,故選B.考點:本題主要考查了相似三角形的性質(zhì)點評:解答本題的關(guān)鍵是掌握相似三角形面積的比等于相似比的平方二、填空題(每題4分,共24分)13、【分析】取BC的中點為H,在HC上取一點I使,相似比為,由相似三角形的性質(zhì)可得,即當點D、G、I三點共線時,最小,由點D作BC的垂線交BC延長線于點P,由銳角三角函數(shù)和勾股定理求得DI的長度,即可根據(jù)求解.【詳解】取BC的中點為H,在HC上取一點I使,相似比為∵G為的中點∴∵且相似比為,得當點D、G、I三點共線時,最小由點D作BC的垂線交BC延長線于點P即由勾股定理得故答案為:.【點睛】本題考查了線段長度的最值問題,掌握相似三角形的性質(zhì)以及判定定理、銳角三角函數(shù)、勾股定理是解題的關(guān)鍵.14、65°【分析】根據(jù)切線長定理即可得出AB=AC,然后根據(jù)等邊對等角和三角形的內(nèi)角和定理即可求出結(jié)論.【詳解】解:∵是的切線,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案為:65°.【點睛】此題考查的是切線長定理和等腰三角形的性質(zhì),掌握切線長定理和等邊對等角是解決此題的關(guān)鍵.15、1.【分析】根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得時,對應(yīng)的函數(shù)解析式,從而可以求得時對應(yīng)的函數(shù)值,由的的圖象可以求得時對應(yīng)的函數(shù)值,從而可以計算出題目中所求問題的答案,本題得以解決.【詳解】設(shè)當時,對應(yīng)的函數(shù)解析式為,,得,即當時,對應(yīng)的函數(shù)解析式為,當時,,由圖象可知,去年的水價是(元/),故小雨家去年用水量為150,需要繳費:(元),(元),即小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多1元,故答案為:1.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.16、1【分析】根據(jù)正多邊形內(nèi)角和公式可求出、,根據(jù)切線的性質(zhì)可求出、,從而可求出,然后根據(jù)圓弧長公式即可解決問題.【詳解】解:五邊形ABCDE是正五邊形,.AB、DE與相切,,,故答案為1.【點睛】本題主要考查了切線的性質(zhì)、正五邊形的性質(zhì)、多邊形的內(nèi)角和公式、熟練掌握切線的性質(zhì)是解決本題的關(guān)鍵.17、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,18、【分析】連接AE,可得∠AED=∠BEA=90°,從而知點E在以AB為直徑的⊙Q上,繼而知點Q、E、C三點共線時CE最小,根據(jù)勾股定理求得QC的長,即可得線段CE的最小值.【詳解】解:如圖,連接AE,則∠AED=∠BEA=90°(直徑所對的圓周角等于90°),
∴點E在以AB為直徑的⊙Q上,
∵AB=4,
∴QA=QB=2,
當點Q、E、C三點共線時,QE+CE=CQ(最短),
而QE長度不變?yōu)?,故此時CE最小,
∵AC=5,
,
∴,
故答案為:.【點睛】本題考查了圓周角定理和勾股定理的綜合應(yīng)用,解決本題的關(guān)鍵是確定E點運動的軌跡,從而把問題轉(zhuǎn)化為圓外一點到圓上一點的最短距離問題.三、解答題(共78分)19、(1);(2);(3)或【分析】(1)把點A(,4)代入中,化簡計算可得反比例函數(shù)的解析式為,將點B(3,m)代入,可得B點坐標,再將A,B兩點坐標代入,化簡計算即可得直線AB的表達式,即是CD的表達式;(2)設(shè)E點的坐標為,則可得D點的坐標為,利用,化簡可得,即可得出E點的坐標;(3)由圖像,直接得出結(jié)論即可.【詳解】(1)把點A(,4)代入中,得:解得∴反比例函數(shù)的解析式為將點B(3,m)代入得m=2∴B(3,2)設(shè)直線AB的表達式為y=kx+b,則有,解得∴直線AB的表達式為(2)設(shè)E點的坐標為令,則∴D點的坐標為DE=6-b∵∴解得:∴E點的坐標為(3)∵A,B,兩點坐標分別為(,4),(3,2),由圖像可知,當時,或【點睛】此題考查了反比例函數(shù)與一次函數(shù)的交點問題以及待定系數(shù)法求解析式.此題難度適中,注意掌握方程思想與分類討論思想的應(yīng)用.20、電視塔的高度為12米.【分析】作AH⊥ED交FC于點G,交ED于H;把實際問題抽象到相似三角形中,利用相似三角形的對應(yīng)邊成比例列出方程,解方程即可.【詳解】解:過A點作AH⊥ED,交FC于G,交ED于H.由題意可得:△AFG∽△AEH,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,∴AH=AG+GH=7米,F(xiàn)G=FC-CG=1.1米∴=即=,解得:EH=10.1.∴ED=EH+HD=10.1+1.1=12(米).∴電視塔的高度為12米.【點睛】此題考查的是相似三角形的應(yīng)用,掌握構(gòu)造相似三角形的方法和相似三角形的判定及性質(zhì)是解決此題的關(guān)鍵.21、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標即可;(2)分別作出A,B繞C點順時針旋轉(zhuǎn)90°后的對應(yīng)點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經(jīng)過的路徑長=π.【點睛】本題考查網(wǎng)格作圖與弧長計算,熟練掌握位似與旋轉(zhuǎn)作圖,以及弧長公式是解題的關(guān)鍵.22、(1)答案見解析;(2)答案見解析;(3)(1,0)【分析】(1)首先將A、B、C三點分別向右平移3個單位,再向上平移1個單位,得A1、B1、C1三點,順次連接這些點,即可得到所求作的三角形;(2)找出點B、C繞點A順時針旋轉(zhuǎn)90°的位置,然后順次連接即可;(3)△A′B′C′與△ABC是中心對稱圖形,連接對應(yīng)點即可得出答案.【詳解】解:(1)將A,B,C,分別右平移3個單位長度,再向上平移1個單位長度,可得出平移后的△A1B1C1;(2)將△A1B1C1三頂點A1,B1,C1,繞原點旋轉(zhuǎn)90°,即可得出△A2B2C2;(3)∵△A′B′C′與△ABC是中心對稱圖形,連接AA′,BB′CC′可得出交點:(1,0),故答案為(1,0).【點睛】本題考查作圖-旋轉(zhuǎn)變換;作圖-平移變換,掌握圖形變化特點,數(shù)形結(jié)合思想解題是關(guān)鍵.23、(1)拋物線的解析式為y=-x2-2x+3,頂點坐標(-1,4);(2)存在點F(-1-,-1)【分析】(1)要求拋物線y=-x2+bx+c的解析式,由于b與c待定,為此要找拋物線上兩點坐標,拋物線y=-x2+bx+c經(jīng)過A、B兩點,且直線y=x+3與x軸、y軸分別交于點A、B,讓x=0,求y值,讓y=0,求x的值A(chǔ)、B兩點坐標代入解析式,利用配方變頂點式即可,(2)使A、E、C、F為頂點的四邊形面積為1,AC把四邊形分為兩個三角形,△ACE,△ACF,由拋物線y=-x2-2x+3與x軸交點A、C兩點,y=0,可求A、C兩點坐標,則AC長可求,點E在直線y=x+3上,由在對稱軸上,可求,設(shè)第三象限拋物線上的點縱坐標為-m,S四邊形AECF=,可求F點的縱坐標-m,把y=-m代入拋物線解析式,求出x即可.【詳解】(1)已知直線y=x+3與x軸、y軸分別交于點A、B,∴當x=0時,y=3,B(0,3),∴當y=0時,x+3=0,x=-3,A(-3,0),拋物線y=-x2+bx+c經(jīng)過A、B兩點,A、B兩點坐標代入解析式,解得,拋物線y=-x2-2x+3,拋物線y=-x2-2x+3=-(x+1)2+4,拋物線頂點坐標(-1,4),(2)使A、E、C、F為頂點的四邊形面積為1,拋物線y=-x2-2x+3與x軸交點A、C兩點,y=0,-x2-2x+3=0,解得x=1或x=-3,A(-3,0),C(1,0),點E在直線y=x+3上,當x=-1時,y=-1+3=2,設(shè)第三象限拋物線上的點縱坐標為-m,S四邊形AECF=S四邊形AECF=,AC=4,2+m=3,m=1,當y=-1時,-1=-x2-2x+3,x=-1±,由x<0,x=-1-,點F(-1-,-1),故存在第三象限內(nèi)的拋物線上點F(-1-,-1),使A、E、C、F為頂點的四邊形面積為1.【點睛】本題考查拋物線解析式,頂點以及四邊形面積問題,確定拋物線上兩點確保,會利用一次函數(shù)求兩軸交點坐標,會利用配方法把拋物線解析式變?yōu)轫旤c式,會利用AC把四邊形分成兩個三角形求面積來解決問題.24、(1)證明見解析;(2)【分析】(1)證出根的判別式即可完成;(2)將k視為數(shù),求出方程的兩個根,即可求出k的取值范圍.【詳解】(1)證明:∴方程總有兩個實數(shù)根(2)∴∴∵方程有一個小于1的正根∴∴【點睛】本題考查一元二次方程根的判別式與方程的根之間的關(guān)系,熟練掌握相關(guān)知識點是解題關(guān)鍵.25、(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.②如圖1中,假設(shè)在AC邊設(shè)上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構(gòu)建方程即可解決問題.(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木結(jié)構(gòu)工程安全風險評估與管控合同
- 二零二五版航空航天設(shè)備采購合同集2篇
- 二零二五年度跨境電商物流服務(wù)合同變更2篇
- 管理溝通培訓(xùn)
- 二零二五年度貨車貨運配送承包合同3篇
- 基于2025年度財務(wù)預(yù)算的合同成本管理與優(yōu)化2篇
- 地質(zhì)勘查專用設(shè)備制造考核試卷
- 二零二五版環(huán)保項目墊資合同范本2篇
- 2025年度木材加工鋼材買賣居間合同附帶供應(yīng)鏈金融方案3篇
- 2025版小學(xué)校園廣播系統(tǒng)升級合同3篇
- 《電影之創(chuàng)戰(zhàn)紀》課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- 開題報告-鑄牢中華民族共同體意識的學(xué)校教育研究
- 《醫(yī)院標識牌規(guī)劃設(shè)計方案》
- 夜市運營投標方案(技術(shù)方案)
- 電接點 水位計工作原理及故障處理
- 國家職業(yè)大典
- 2024版房產(chǎn)代持協(xié)議書樣本
- 教育家精神六個方面專題PPT
- 海通食品集團楊梅汁產(chǎn)品市場營銷
- 教學(xué)查房及體格檢查評分標準
評論
0/150
提交評論