數(shù)據(jù)庫系統(tǒng)基礎教程第一版數(shù)據(jù)庫習題答案_第1頁
數(shù)據(jù)庫系統(tǒng)基礎教程第一版數(shù)據(jù)庫習題答案_第2頁
數(shù)據(jù)庫系統(tǒng)基礎教程第一版數(shù)據(jù)庫習題答案_第3頁
數(shù)據(jù)庫系統(tǒng)基礎教程第一版數(shù)據(jù)庫習題答案_第4頁
數(shù)據(jù)庫系統(tǒng)基礎教程第一版數(shù)據(jù)庫習題答案_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Exercise5.1.1

Asaset:

Average=2.37

Asabag:

speed

2.66

2.10

1.42

2.80

3.20

3.20

2.20

2.20

2.00

2.80

1.86

2.80

3.06

Average=2.48

Exercise5.1.2

Average=218

Asabag:

Average=215

Exercise5.1.3a

Asaset:

Asabag:

Exercise5.1.3b

7ibore(ShipstxlClasses)

Exercise5.1.4a

Forbags:

Ontheleft-handside:

GivenbagsRandSwhereatupletappearsnandmtimesrespectively,theunionofbags

RandSwillhavetupletappearn+mtimes.ThefurtherunionofbagTwiththetuplet

appearingotimeswillhavetupletappearn+m+otimesinthefinalresult.

Ontheright-handside:

GivenbagsSandTwhereatupletappearsmandotimesrespectively,theunionofbags

RandSwillhavetupletappearm+otimes.ThefurtherunionofbagRwiththetuplet

appearingntimeswillhavetupletappearm+o+ntimesinthefinalresult.

Forsets:

Thisisasimilarcasewhendealingwithbagsexceptthetupletcanonlyappearatmostoncein

eachset.Thetupletonlyappearsintheresultifallthesetshavethetuplet.Otherwise,thetuple

twillnotappearintheresult.Sincewecannothaveduplicates,theresultonlyhasatmostone

copyofthetuplet.

Exercise5.1.4b

Forbags:

Ontheleft-handside:

GivenbagsRandSwhereatupletappearsnandmtimesrespectively,theintersection

ofbagsRandSwillhavetupletappearmin(tt,m)times.Thefurtherintersectionofbag

Twiththetupletappearingotimeswillproducetupletmin(qmin(n.m))timesinthe

finalresult.

Ontheright-handside:

GivenbagsSandTwhereatupletappearsmandotimesrespectively,theintersectionof

bagsRandSwillhavetupletappearmin(m,o)times.ThefurtherintersectionofbagR

withthetupletappearingntimeswillproducetupletmin(",min(m,o))timesinthe

finalresult.

TheintersectionofbagsR,SandTwillyieldaresultwheretupletappearsmin(幾,m,o)times.

Forsets:

Thisisasimilarcasewhendealingwithbagsexceptthetupletcanonlyappearatmostoncein

eachset.Thetupletonlyappearsintheresultifallthesetshavethetuplet.Otherwise,thetuple

twillnotappearintheresult.

Exercise5.1.4c

Forbags:

Ontheleft-handside:

GiventhattuplerinR,whichappearsmtimes,cansuccessfullyjoinwithtuplesinS,

whichappearsntimes,weexpecttheresulttocontainmncopies.Alsogiventhattuplet

inT,whichappearsotimes,cansuccessfullyjoinwiththejoinedtuplesofrands,we

expectthefinalresulttohavemnocopies.

Ontheright-handside:

GiventhattuplesinS,whichappearsntimes,cansuccessfullyjoinwithtupletinT,

whichappearsotimes,weexpecttheresulttocontainnocopies.Alsogiventhattupler

inR,whichappearsmtimes,cansuccessfullyjoinwiththejoinedtuplesofsandZ,we

expectthefinalresulttohavenomcopies.

Theorderinwhichweperformthenaturaljoindoesnotmatterforbags.

Forsets:

Thisisasimilarcasewhendealingwithbagsexceptthejoinedtuplescanonlyappearatmost

onceineachresult.IftherearetuplesinrelationsR,S,Tthatcansuccessfullyjoin,thenthe

resultwillcontainatuplewiththeschemaoftheirjoinedattributes.

Exercise5.1.4d

Forbags:

SupposeatupletoccursnandmtimesinbagsRandSrespectively.Intheunionofthesetwo

bagsRuS,tupletwouldappearn+mtimes.Likewise,intheunionofthesetwobagsSuR,

tupletwouldappearm+ntimes.Bothsidesoftherelationyieldthesameresult.

Forsets:

Atupletcanonlyappearatmostonetime.TupletmightappeareachinsetsRandSoneorzero

times.ThecombinationsofnumberofoccurrencesfortuplezinRandSrespectivelyare(0,0),

(0,1),(1,0),and(1,1).OnlywhentupletappearsinbothsetsRandSwilltheunionRuShave

thetuplet.ThesamereasoningholdswhenwetaketheunionSuR.

Thereforethecommutativelawforunionholds.

Exercise5.1.4e

Forbags:

SupposeatupletoccursnandmtimesinbagsRandSrespectively.Intheintersectionofthese

twobagsRAS,tupletwouldappearmin()times.Likewiseintheintersectionofthesetwo

bagsSClR,tupletwouldappearmin(m.n)times.Bothsidesoftherelationyieldthesame

result.

Forsets:

Atupletcanonlyappearatmostonetime.TupletmightappeareachinsetsRandSoneorzero

times.Thecombinationsofnumberofoccurrencesfortuple/inRandSrespectivelyare(0,0),

(0,1),(1,0),and(1,1).OnlywhentupletappearsinatleastoneofthesetsRandSwillthe

intersectionRAShavethetuplet.ThesamereasoningholdswhenwetaketheintersectionSA

R.

Thereforethecommutativelawforintersectionholds.

Exercise5.1.4f

Forbags:

SupposeatupletoccursntimesinbagRandtupleuoccursmtimesinbagS.Supposealsothat

thetwotuplest.ucansuccessfullyjoin.TheninthenaturaljoinofthesetwobagsRtxlS,the

joinedtuplewouldappearnmtimes.LikewiseinthenaturaljoinofthesetwobagsStxlR,the

joinedtuplewouldappearmntimes.Bothsidesoftherelationyieldthesameresult.

Forsets:

Anarbitrarytupletcanonlyappearatmostonetimeinanyset.Tuplesw,vmightappear

respectivelyinsetsRandSoneorzerotimes.Thecombinationsofnumberofoccurrencesfor

tuplesu,vinRandSrespectivelyare(0,0),(0,1),(1,0),and(1,1).OnlywhentupleuexistsinR

andtuplevexistsinSwillthenaturaljoinRbdShavethejoinedtuple.Thesamereasoning

holdswhenwetakethenaturaljoinSMR.

Thereforethecommutativelawfornaturaljoinholds.

Exercise5.1.4g

Forbags:

SupposetupletappearsmtimesinRandntimesinS.IfwetaketheunionofRandSfirst,we

willgetarelationwheretupletappearsm+ntimes.TakingtheprojectionofalistofattributesL

willyieldaresultingrelationwheretheprojectedattributesfromtupletappearm+ntimes.If

wetaketheprojectionoftheattributesinlistLfirst,thentheprojectedattributesfromtuplet

wouldappearmtimesfromRandntimesfromS.Theunionoftheseresultingrelationswould

havetheprojectedattributesoftupletappearm+ntimes.

Forsets:

Anarbitrarytupletcanonlyappearatmostonetimeinanyset.TupletmightappearinsetsR

andSoneorzerotimes.ThecombinationsofnumberofoccurrencesfortuplerinRandS

respectivelyare(0,0),(0,1),(1,0),and(1,1).OnlywhentupletexistsinRorS(orbothRandS)

willtheprojectedattributesoftupletappearintheresult.

Thereforethelawholds.

Exercise5.1.4h

Forbags:

SupposetupletappearsutimesinR,vtimesinSandwtimesinT.Onthelefthandside,the

intersectionofSandTwouldproducearesultwheretupletwouldappearmin(v,卬)times.With

theadditionoftheunionofR,theoverallresultwouldhaveu+min(v,w)copiesoftuplet.On

therighthandside,wewouldgetaresultofmin(w+也〃+vv)copiesoftuplet.Theexpressions

onboththeleftandrightsidesareequivalent.

Forsets:

Anarbitrarytupletcanonlyappearatmostonetimeinanyset.TupletmightappearinsetsR,S

andToneorzerotimes.ThecombinationsofnumberofoccurrencesfortupleZinR,SandT

respectivelyare(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0)and(1,1,1).Onlywhen

tupletappearsinRorinbothSandTwilltheresulthavetuplet.

Thereforethedistributivelawofunionoverintersectionholds.

Exercise5.1.4i

SupposethatinrelationR,utuplessatisfyconditionCandvtuplessatisfyconditionD.Suppose

alsothatwtuplessatisfybothconditionsCandDwherew<min(v,vv).Thenthelefthandside

willreturnthosewtuples.Ontherighthandside,QC(R)producesutuplesandQD(R)producesv

tuples.However,weknowtheintersectionwillproducethesamewtuplesintheresult.

Whenconsideringbagsandsets,theonlydifferenceisbagsallowduplicatetupleswhilesets

onlyallowonecopyofthetuple.Theexampleaboveappliestobothcases.

Thereforethelawholds.

Exercise5.1.5a

Forsets,anarbitrarytupletappearsonthelefthandsideifitappearsinbothR,SandnotinT.

Thesameistruefortherighthandside.

Asanexampleforbags,supposethattupletappearsonetimeeachinbothR,Tandtwotimesin

S.Theresultofthelefthandsidewouldhavezerocopiesoftupletwhiletherighthandside

wouldhaveonecopyoftuplet.

Thereforethelawholdsforsetsbutnotforbags.

Exercise5.1.5b

Forsets,anarbitrarytupletappearsonthelefthandsideifitappearsinRandeitherSorT.This

isequivalenttosayingtupletonlyappearswhenitisinatleastRandSorinRandT.The

equivalenceisexactlytherightside'sexpression.

Asanexampleforbags,supposethattupletappearsonetimeinRandtwotimeseachinSandT.

Thenthelefthandsidewouldhaveonecopyoftupletintheresultwhiletherighthandside

wouldhavetwocopiesoftuplet.

Thereforethelawholdsforsetsbutnotforbags.

Exercise5.1.5c

Forsets,anarbitrarytupletappearsonthelefthandsideifitsatisfiesconditionC,conditionD

orbothconditionCandD.Ontherighthandside,oc(R)selectsthosetuplesthatsatisfy

conditionCwhileOD(R)selectsthosetuplesthatsatisfyconditionD.However,theunion

operatorwilleliminateduplicatetuples,namelythosetuplesthatsatisfybothconditionCandD.

Thusweareensuredthatbothsidesareequivalent.

Asanexampleforbags,weonlyneedtolookattheunionoperator.Ifthereareindeedtuples

thatsatisfybothconditionsCandD,thentherighthandsidewillcontainduplicatecopiesof

thosetuples.Thelefthandside,however,willonlyhaveonecopyforeachtupleoftheoriginal

setoftuples.

Exercise5.2.1a

A+BA2B2

101

549

101

6416

7916

Exercise5.2.1b

B+lC-l

10

Exercise5.2.1c

AB

01

01

23

24

34

Exercise5.2.1d

BC

01

02

24

25

34

34

Exercise5.2.1e

pH

Exercise5.2.1f

BC

01

24

25

34

02

Exercise5.2.1g

ASUM(B)

02

27

34

Exercise5.2.1h

BAVG(C)

01.5

24.5

34

Exercise5.2.1i

Exercise5.2.1j

AMAX(C)

24

Exercise5.2.1k

ABc

234

234

01

01

24_L

34

Exercise5.2.11

ABc

234

234

JL01

_L24

JL25

±02

Exercise5.2.1m

ABc

234

234

01±

01_L

24

34_L

_L01

24

25

_L02

Exercise5.2.1n

AR.BS.Bc

0124

0125

0134

0134

0124

0125

0134

0134

23±±

24±±

34±

J_01

_L-L02

Exercise5.2.2a

Applyingthe8operatoronarelationwithnoduplicateswillyieldthesamerelation.Thus8is

idempotent.

Exercise5.2.2b

TheresultofTCLisarelationoverthelistofattributesL.Performingtheprojectionagainwill

returnthesamerelationbecausetherelationonlycontainsthelistofattributesL.ThusTILis

idempotent.

Exercise5.2.2c

TheresultofocisarelationwhereconditionCissatisfiedbyeverytuple.Performingthe

selectionagainwillreturnthesamerelationbecausetherelationonlycontainstuplesthatsatisfy

theconditionC.Thusocisidempotent.

Exercise5.2.2d

TheresultofYLisarelationwhoseschemaconsistsofthegroupingattributesandtheaggregated

attributes.Ifweperformthesamegroupingoperation,thereisnoguaranteethattheexpression

wouldmakesense.Thegroupingattributeswillstillappearinthenewresult.However,the

aggregatedattributesmayormaynotappearcorrectly.Iftheaggregatedattributeisgivena

differentnamethantheoriginalattribute,thenperformingYLwouldnotmakesensebecauseit

containsanaggregationforanattributenamethatdoesnotexist.Inthiscase,theresulting

relationwould,accordingtothedefinition,onlycontainthegroupingattributes.Thus,YLisnot

idempotent.

Exercise5.2.2e

TheresultofTisasortedlistoftuplesbasedonsomeattributesL.IfLisnottheentireschema

ofrelationR,thenthereareattributesthatarenotsortedon.IfinrelationRtherearetwotuples

thatagreeinallattributesLanddisagreeinsomeoftheremainingattributesnotinL,thenitis

arbitraryastowhichorderthesetwotuplesappearintheresult.Thus,performingtheoperationT

multipletimescanyieldadifferentrelationwherethesetwotuplesareswapped.Thus,Tisnot

idempotent.

Exercise5.2.3

Ifweonlyconsidersets,thenitispossible.WecantakeKA(R)anddoaproductwithitself.From

thisproduct,wetakethetupleswherethetwocolumnsareequaltoeachother.

Ifweconsiderbagsaswell,thenitisnotpossible.Takethecasewherewehavethetwotuples

(1,0)and(1,0).Wewishtoproducearelationthatcontainstuples(1,1)and(1,1).Ifweusethe

classicaloperationsofrelationalalgebra,wecaneithergetaresultwheretherearenotuplesor

fourcopiesofthetuple(1,1).Itisnotpossibletogetthedesiredrelationbecausenooperation

candistinguishbetweentheoriginaltuplesandtheduplicatedtuples.Thusitisnotpossibleto

gettherelationwiththetwotuples(1,1)and(1,1).

Exercise5.3.1

a)Answer(model)<—PC(model,speed,ANDspeed>3.00

b)Answer(maker)<—Laptop(model,_,_,hd,_,_)ANDProduct(maker,model,_)ANDhd>

100

c)Answer(model,price)<—PC(model,price)ANDProduct(maker,model,_)AND

maker='B'

Answer(model,price)<—Laptop(model,price)ANDProduct(maker,model,_)

ANDmaker=,B,

Answer(model,price)<—Printer(model,_,_,price)ANDProduct(maker,model,_)AND

maker='B'

d)Answer(model)<—Printer(inodel,color,type,_)ANDcolor=,true,ANDtype='laser'

e)PCMaker(maker)<—Product(maker,_,type)ANDtype=,pc,

LaptopMaker(maker)<—Product(maker,type)ANDtype=,laptop,

Answer(maker)<—LaptopMaker(maker)ANDNOTPCMaker(maker)

f)Answer(hd)PC(modell,_,_,hd,_)ANDPC(model2,_,_,hd,_)ANDmodel1<>

model2

g)Answer(model1,model2)<—PC(model1,speed,ram,_,_)AND

PC(model2,_speed,ram,_,_)ANDmodel1<mode!2

h)FastComputer(model)<—PC(model,speed,ANDspeed>2.80

FastComputer(model)<—Laptop(model,speed,ANDspeed>2.80

Answer(maker)<—Product(maker,model1,_)ANDProduct(maker,model2,_)AND

FastComputer(model1)ANDFastComputer(model2)ANDmodel1<>model2

i)Computers(model,speed)—PC(model,speed,

Computers(model,speed)<—Laptop(model,speed,

SlowComputers(model)—Coinputers(model,speed)ANDComputers(model1,speed1)

ANDspeed<speed1

FastestComputers(model)<—Computers(model,_)ANDNOTSlowComputers(model)

Answer(maker)<—FastestComputers(model)ANDProduct(maker,model,_)

j)PCs(maker,speed)<—PC(model,speed,ANDProduct(maker,model,_)

Answer(maker)<—PCs(maker,speed)ANDPCs(maker,speed1)ANDPCs(maker,speed2)

ANDspeed<>speed1ANDspeed<>speed2ANDspeed1<>speed2

k)PCs(maker,model)<—Product(maker,model,type)ANDtype—pc,

Answer(maker)<—PCs(maker,model)ANDPCs(maker,model1)AND

PCs(maker,model2)ANDPCs(maker,model3)ANDmodel<>model1ANDmodel<>

model2ANDmodel1<>mode12AND(mode13=modelORmodel3=model1OR

model3=model2)

Exercise5.3.2

a)Answer(class,country)Classes(class,_,countrybore,_)ANDbore>16

b)Answer(name)<—Ships(name,_,launched)ANDlaunched<1921

c)Answer(ship)<—Outcomes(ship,battle,result)ANDbattle=,DenmarkStrait9ANDresult

=’sunk'

d)Answer(name)<—Classes(class,_,displacement)ANDShips(name,class,launched)

ANDdisplacement>35000ANDlaunched>1921

e)Answer(name,displacement,numGuns)<—Classes(class,_,_,numGuns,_,displacement)

ANDShips(name,class,_)ANDOutcomes(ship,battle,_)ANDbattle=,Guadalcanal9

ANDship=name

f)Answer(name)<—Ships(name,_,_)

Answer(name)<—Outcomes(name,_,_)ANDNOTAnswer(name)

g)MoreThanOne(class)<—Ships(name,class,_)ANDShips(namel,class,_)ANDname<>

namel

Answer(class)<—Classes(class,_2_2_2_2_)ANDNOTMoreThanOne(class)

h)Battleship(country)<—Classes(_,type,countryANDtype=,bb,

Battlecruiser(country)<—Classes(_,type,country,ANDtype='bc,

Answer(country)<—Battleship(country)ANDBattlecruiser(country)

i)Results(ship,result,date)<—Battles(name,date)ANDOutcomes(ship,battle,result)AND

battle=name

Answer(ship)<—Results(ship,result,date)ANDResults(ship,_,date1)AND

result=,damaged9ANDdate<datel

Exercise5.3.3

Answer(x,y)<—R(x,y)ANDz=z

Exercise5.4.1a

Answer(a,b,c)<—R(a,b,c)

Answer(a,b,c)<—S(a,b,c)

Exercise5.4.1b

Answer(a,b,c)<—R(a,b,c)ANDS(a,b,c)

Exercise5.4.1c

Answer(a,b,c)<—R(a,b,c)ANDNOTS(a,b,c)

Exercise5.4.Id

Union(a,b,c)<—R(a,b,c)

Union(a,b,c)<—S(a,b,c)

Answer(a,b,c)<—Union(a,b,c)ANDNOTT(a,b,c)

Exercise5.4.Ie

J(a,b,c)-R(a,b,c)ANDNOTS(a,b,c)

K(a,b,c)-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論