版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市易門縣重點名校2023-2024學年中考數(shù)學考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知a,b,c在數(shù)軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結果是()A.4b+2c B.0 C.2c D.2a+2c2.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.163.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米5.小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是()A.50,50 B.50,30 C.80,50 D.30,506.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數(shù)不可能是()A.16 B.17 C.18 D.197.計算的結果是().A. B. C. D.8.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.9.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y310.下列方程中有實數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.11.設x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或512.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式8x2y﹣2y=_____.14.已知關于x的一元二次方程(k﹣5)x2﹣2x+2=0有實根,則k的取值范圍為_____.15.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.16.已知ba=217.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.18.如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一輛汽車,新車購買價30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價值為萬元,求這輛車第二、三年的年折舊率.20.(6分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側)連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.21.(6分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結果保留小數(shù)點后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)22.(8分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.23.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.24.(10分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.25.(10分)如圖,中,,于,,為邊上一點.(1)當時,直接寫出,.(2)如圖1,當,時,連并延長交延長線于,求證:.(3)如圖2,連交于,當且時,求的值.26.(12分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.27.(12分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】由數(shù)軸上點的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點睛:本題考查了整式的加減以及數(shù)軸,涉及的知識有:去括號法則以及合并同類項法則,熟練掌握運算法則是解本題的關鍵.2、C【解析】
根據(jù)根與系數(shù)的關系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【點睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.3、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結合解決問題是解題的關鍵.4、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.5、A【解析】分析:根據(jù)扇形統(tǒng)計圖分別求出購買課外書花費分別為100、80、50、30、20元的同學人數(shù),再根據(jù)眾數(shù)、中位數(shù)的定義即可求解.詳解:由扇形統(tǒng)計圖可知,購買課外書花費為100元的同學有:20×10%=2(人),購買課外書花費為80元的同學有:20×25%=5(人),購買課外書花費為50元的同學有:20×40%=8(人),購買課外書花費為30元的同學有:20×20%=4(人),購買課外書花費為20元的同學有:20×5%=1(人),20個數(shù)據(jù)為100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在這20位同學中,本學期計劃購買課外書的花費的眾數(shù)為50元,中位數(shù)為(50+50)÷2=50(元).故選A.點睛:本題考查了扇形統(tǒng)計圖,平均數(shù),中位數(shù)與眾數(shù),注意掌握通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.6、A【解析】
一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經(jīng)過兩個相鄰點,則少了一條邊;經(jīng)過一個頂點和一邊,邊數(shù)不變;經(jīng)過兩條鄰邊,邊數(shù)增加一條.7、D【解析】
根據(jù)同底數(shù)冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.8、B【解析】
將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.9、D【解析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點所在的象限,再根據(jù)函數(shù)的增減性即可得出結論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關鍵.10、C【解析】
A、B是一元二次方程可以根據(jù)其判別式判斷其根的情況;C是無理方程,容易看出沒有實數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數(shù)根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數(shù)根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.11、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.12、D【解析】
分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質;平方差公式的幾何背景;平行四邊形的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2y(2x+1)(2x﹣1)【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【詳解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案為2y(2x+1)(2x-1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.14、【解析】
若一元二次方程有實根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關于k的不等式組,求出k的取值范圍.【詳解】解:∵方程有兩個實數(shù)根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【點睛】此題考查根的判別式問題,總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.15、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質等知識,解題的關鍵是學會用轉化的思想思考問題,學會利用軸對稱解決最短問題.16、3【解析】
依據(jù)ba=23可設a=3k,b=2【詳解】∵ba∴可設a=3k,b=2k,∴aa-b故答案為3.【點睛】本題主要考查了比例的性質及見比設參的數(shù)學思想,組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.17、【解析】
把(1,4)代入兩函數(shù)表達式可得:a+b=4,再根據(jù)“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.18、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據(jù)角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數(shù)圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、這輛車第二、三年的年折舊率為.【解析】
設這輛車第二、三年的年折舊率為x,則第二年這就后的價格為30(1-20%)(1-x)元,第三年折舊后的而價格為30(1-20%)(1-x)2元,與第三年折舊后的價格為17.34萬元建立方程求出其解即可.【詳解】設這輛車第二、三年的年折舊率為,依題意,得整理得,解得,.因為折舊率不可能大于1,所以不合題意,舍去.所以答:這輛車第二、三年的年折舊率為.【點睛】本題是一道折舊率問題,考查了列一元二次方程解實際問題的運用,解答本題時設出折舊率,表示出第三年的折舊后價格并運用價格為11.56萬元建立方程是關鍵.20、(1)證明見解析;(2)+;(3)的值不變,.【解析】
(1)根據(jù)等腰三角形的性質得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質定理是解題的關鍵.21、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的長求出OA,在Rt△BOC,由∠BCO的大小和OC的長求出OA,而AB=OB-0A,即可得到答案?!驹斀狻坑深}意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長為6.0km,AB的長為1.7km.【點睛】本題主要考查三角函數(shù)的知識。22、見解析【解析】
由菱形的性質可得,,然后根據(jù)角角邊判定,進而得到.【詳解】證明:∵菱形ABCD,∴,,∵,,∴,在與中,,∴,∴.【點睛】本題考查菱形的性質和全等三角形的判定與性質,根據(jù)菱形的性質得到全等條件是解題的關鍵.23、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.24、(1)證明見解析;(1)2【解析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質,勾股定理的應用,等角的余角相等的性質,熟記各性質并準確識圖是解題的關鍵.25、(1),;(2)證明見解析;(3).【解析】
(1)利用相似三角形的判定可得,列出比例式即可求出結論;(2)作交于,設,則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結論;(3)作于,根據(jù)相似三角形的判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 燈罩塑件課程設計
- 道路施工預算課程設計
- 共享經(jīng)濟車輛運營合同
- 2024年海外貿易業(yè)務合作協(xié)議
- 智能合約在金融行業(yè)的應用推廣合同
- 旅游業(yè)線上推廣合作協(xié)議
- 可再生能源推廣項目運營合同
- 創(chuàng)新藥物研發(fā)委托合同
- 干洗店連鎖經(jīng)營合同
- 教育培訓在線課程開發(fā)合作合同
- 零缺陷與質量成本
- 網(wǎng)吧企業(yè)章程范本
- 安徽省書法家協(xié)會會員登記表
- 阿特拉斯基本擰緊技術ppt課件
- 五格數(shù)理解釋及吉兇對照
- 婚姻狀況聲明書
- 新課程理念下的班主任工作藝術
- (完整版)企業(yè)破產(chǎn)流程圖(四張)
- 領導激勵藝術教材
- 化肥對土壤的影響
- 水泥罐抗傾覆驗算7頁
評論
0/150
提交評論