




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第15講導數(shù)與函數(shù)的單調(diào)性(精講)題型目錄一覽①導數(shù)與原函數(shù)圖像之間的聯(lián)系②不含參數(shù)的函數(shù)單調(diào)性③含參數(shù)的函數(shù)單調(diào)性一次函數(shù)型二次函數(shù)型Ⅰ(可因式分解)二次函數(shù)型Ⅱ(不可因式分解)指數(shù)函數(shù)型④函數(shù)單調(diào)性中的參數(shù)值(范圍)問題★【文末附錄-導數(shù)與函數(shù)的單調(diào)性思維導圖】一、知識點梳理一、知識點梳理一、單調(diào)性基礎(chǔ)問題1.函數(shù)的單調(diào)性函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)SKIPIF1<0在某個區(qū)間內(nèi)可導,如果SKIPIF1<0,則SKIPIF1<0為增函數(shù);如果SKIPIF1<0,則SKIPIF1<0為減函數(shù).2.已知函數(shù)的單調(diào)性問題=1\*GB3①若SKIPIF1<0在某個區(qū)間上單調(diào)遞增,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個區(qū)間上單調(diào)遞增;=2\*GB3②若SKIPIF1<0在某個區(qū)間上單調(diào)遞減,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個區(qū)間上單調(diào)遞減.二、討論單調(diào)區(qū)間問題類型一:不含參數(shù)單調(diào)性討論(1)求導化簡定義域(化簡應(yīng)先通分,盡可能因式分解;定義域需要注意是否是連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導函數(shù)中未知正負,需要單獨討論的部分.定號部分:已知恒正或恒負,無需單獨討論的部分);(3)求根做圖得結(jié)論(如能直接求出導函數(shù)等于0的根,并能做出導函數(shù)與x軸位置關(guān)系圖,則導函數(shù)正負區(qū)間段已知,可直接得出結(jié)論);(4)未得結(jié)論斷正負(若不能通過第三步直接得出結(jié)論,則先觀察導函數(shù)整體的正負);(5)正負未知看零點(若導函數(shù)正負難判斷,則觀察導函數(shù)零點);(6)一階復(fù)雜求二階(找到零點后仍難確定正負區(qū)間段,或一階導函數(shù)無法觀察出零點,則求二階導);求二階導往往需要構(gòu)造新函數(shù),令一階導函數(shù)或一階導函數(shù)中變號部分為新函數(shù),對新函數(shù)再求導.(7)借助二階定區(qū)間(通過二階導正負判斷一階導函數(shù)的單調(diào)性,進而判斷一階導函數(shù)正負區(qū)間段);類型二:含參數(shù)單調(diào)性討論(1)求導化簡定義域(化簡應(yīng)先通分,然后能因式分解要進行因式分解,定義域需要注意是否是一個連續(xù)的區(qū)間);(2)變號保留定號去(變號部分:導函數(shù)中未知正負,需要單獨討論的部分.定號部分:已知恒正或恒負,無需單獨討論的部分);(3)恒正恒負先討論(變號部分因為參數(shù)的取值恒正恒負);然后再求有效根;(4)根的分布來定參(此處需要從兩方面考慮:根是否在定義域內(nèi)和多根之間的大小關(guān)系);(5)導數(shù)圖像定區(qū)間;【常用結(jié)論】①使SKIPIF1<0的離散點不影響函數(shù)的單調(diào)性,即當SKIPIF1<0在某個區(qū)間內(nèi)離散點處為零,在其余點處均為正(或負)時,SKIPIF1<0在這個區(qū)間上仍舊是單調(diào)遞增(或遞減)的.例如,在SKIPIF1<0上,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,而顯然SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù).②若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.因為SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.當SKIPIF1<0時,SKIPIF1<0在這個區(qū)間為常值函數(shù);同理,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.這說明在一個區(qū)間上函數(shù)的導數(shù)大于零,是這個函數(shù)在該區(qū)間上單調(diào)遞增的充分不必要條件.于是有如下結(jié)論:SKIPIF1<0SKIPIF1<0單調(diào)遞增;SKIPIF1<0單調(diào)遞增SKIPIF1<0;SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞減SKIPIF1<0.二、題型分類精講二、題型分類精講題型一導數(shù)與原函數(shù)圖像之間的聯(lián)系策略方法原函數(shù)的單調(diào)性與導函數(shù)的函數(shù)值的符號的關(guān)系,原函數(shù)SKIPIF1<0單調(diào)遞增SKIPIF1<0導函數(shù)SKIPIF1<0(導函數(shù)等于0,只在離散點成立,其余點滿足SKIPIF1<0);原函數(shù)單調(diào)遞減SKIPIF1<0導函數(shù)SKIPIF1<0(導函數(shù)等于0,只在離散點成立,其余點滿足SKIPIF1<0).【典例1】已知函數(shù)SKIPIF1<0的圖象如圖所示(其中SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù)),則SKIPIF1<0的圖象大致是(
)A. B.C. D.【答案】C【分析】由SKIPIF1<0的圖象得到SKIPIF1<0的取值情況,即可得到SKIPIF1<0的單調(diào)性,即可判斷.【詳解】由SKIPIF1<0的圖象可知當SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故符合題意的只有C.故選:C.【題型訓練】一、單選題1.(2023·浙江紹興·統(tǒng)考模擬預(yù)測)如圖是函數(shù)SKIPIF1<0的導函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0,則SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】D【分析】根據(jù)導函數(shù)的圖象在區(qū)間SKIPIF1<0內(nèi)的函數(shù)的范圍,判斷出函數(shù)SKIPIF1<0區(qū)間SKIPIF1<0上各點處切線的斜率的范圍,根據(jù)導函數(shù)的圖象得導函數(shù)函數(shù)值的符號,得函數(shù)SKIPIF1<0的單調(diào)性,再結(jié)合四個選項可得答案.【詳解】由SKIPIF1<0的圖象可知,當SKIPIF1<0時,SKIPIF1<0,則在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點處切線的斜率在區(qū)間SKIPIF1<0內(nèi),對于A,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點處切線的斜率均小于0,故A不正確;對于B,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點,在該點處切線的斜率大于1,故B不正確;對于C,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點,在該點處切線的斜率大于1,故C不正確;對于D,由SKIPIF1<0的圖象可知,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0上各點處切線的斜率在區(qū)間SKIPIF1<0內(nèi),在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,而函數(shù)SKIPIF1<0的圖象均符合這些性質(zhì),故D正確.故選:D2.(2023·全國·高三專題練習)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象最有可能的是(
)A. B.C. D.【答案】C【分析】根據(jù)導函數(shù)的圖象得出函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)SKIPIF1<0的單調(diào)性即可判斷.【詳解】由導函數(shù)的圖象可得當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.只有C選項的圖象符合.故選:C.3.(2023·陜西西安·校聯(lián)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的大致圖像如圖所示,SKIPIF1<0是SKIPIF1<0的導函數(shù),則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】分SKIPIF1<0、SKIPIF1<0兩種情況求解即可.【詳解】若SKIPIF1<0,則SKIPIF1<0單調(diào)遞減,圖像可知,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,由圖像可知SKIPIF1<0,故不等式SKIPIF1<0的解集為SKIPIF1<0.故選:C二、多選題4.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的導函數(shù)SKIPIF1<0的圖象如圖所示,則下列說法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有SKIPIF1<0個極值點D.SKIPIF1<0的圖象在點SKIPIF1<0處的切線的斜率大于SKIPIF1<0【答案】ACD【分析】根據(jù)導函數(shù)的正負可得SKIPIF1<0單調(diào)性,由單調(diào)性可判斷AB正誤;由極值點定義可知C正確;由SKIPIF1<0可知D正確.【詳解】由圖象可知:當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減;對于A,SKIPIF1<0,SKIPIF1<0,A正確;對于B,SKIPIF1<0,SKIPIF1<0,B錯誤;對于C,由極值點定義可知:SKIPIF1<0為SKIPIF1<0的極大值點;SKIPIF1<0為SKIPIF1<0的極小值點,即SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有SKIPIF1<0個極值點,C正確;對于D,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在點SKIPIF1<0處的切線的斜率大于SKIPIF1<0,D正確.故選:ACD.三、填空題5.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的圖象如圖所示,記SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0最大的是________.【答案】SKIPIF1<0【分析】根據(jù)導數(shù)的幾何意義結(jié)合SKIPIF1<0的圖象分析判斷即可【詳解】根據(jù)導數(shù)的幾何意義,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0處的切線斜率,又SKIPIF1<0與SKIPIF1<0處的切線單調(diào)遞增,SKIPIF1<0處的切線單調(diào)遞減,且SKIPIF1<0處的切線比SKIPIF1<0處的切線更陡峭,∴SKIPIF1<0,故最大為SKIPIF1<0.故答案為:SKIPIF1<06.(2023春·上海·高三統(tǒng)考開學考試)已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0的導函數(shù)是SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的圖象如圖所示,則關(guān)于x的不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】先判斷出SKIPIF1<0的單調(diào)性,然后求得SKIPIF1<0的解集.【詳解】依題意SKIPIF1<0是奇函數(shù),圖象關(guān)于原點對稱,由圖象可知,SKIPIF1<0在區(qū)間SKIPIF1<0遞減,SKIPIF1<0;SKIPIF1<0在區(qū)間SKIPIF1<0遞增,SKIPIF1<0.所以SKIPIF1<0的解集SKIPIF1<0.故答案為:SKIPIF1<0題型二不含參數(shù)的函數(shù)單調(diào)性策略方法求函數(shù)單調(diào)區(qū)間的步驟(1)確定函數(shù)f(x)的定義域.(2)求f′(x).(3)在定義域內(nèi)解不等式f′(x)>0,得單調(diào)遞增區(qū)間.(4)在定義域內(nèi)解不等式f′(x)<0,得單調(diào)遞減區(qū)間.【典例1】函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求出導函數(shù)SKIPIF1<0,在定義域內(nèi)解不等式SKIPIF1<0可得單調(diào)遞增區(qū)間.【詳解】由已知得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故選:B.【題型訓練】一、單選題1.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】C【分析】根據(jù)給定的函數(shù),利用導數(shù)求出單調(diào)減區(qū)間作答.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,求導得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0.故選:C2.(2023·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,現(xiàn)給出如下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確結(jié)論個數(shù)為(
)A.1個 B.2個 C.3個 D.4個【答案】D【分析】利用導數(shù)判定三次函數(shù)的圖象與性質(zhì),結(jié)合圖象即可一一判定結(jié)論.【詳解】求導函數(shù)可得SKIPIF1<0SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0,或SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0所以SKIPIF1<0極大值SKIPIF1<0SKIPIF1<0,SKIPIF1<0極小值SKIPIF1<0SKIPIF1<0要使SKIPIF1<0有三個解SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,那么結(jié)合函數(shù)SKIPIF1<0草圖可知:SKIPIF1<0及函數(shù)有個零點SKIPIF1<0在SKIPIF1<0之間,所以SKIPIF1<0SKIPIF1<0,且SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即②③正確;SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0(i),SKIPIF1<0(ii),把(ii)代入(i)式的平方化簡得:SKIPIF1<0;即④正確;故選:D.3.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先根據(jù)題干條件SKIPIF1<0,得SKIPIF1<0,化簡整理得SKIPIF1<0,然后構(gòu)造函數(shù)SKIPIF1<0,借助導數(shù)求解SKIPIF1<0的最小值,即可求出SKIPIF1<0的最小值.【詳解】由SKIPIF1<0,得SKIPIF1<0,化簡整理得:SKIPIF1<0;令SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;即SKIPIF1<0,故SKIPIF1<0故選:D二、多選題4.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0 B.SKIPIF1<0有4個零點C.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱 D.曲線SKIPIF1<0與SKIPIF1<0軸不相切【答案】CD【分析】對A直接求導,令導函數(shù)小于0,解出即可,對B,通過求出極大值和極小值,結(jié)合其單調(diào)性即可判斷,對C選項利用函數(shù)奇偶性和函數(shù)平移的原則即可判斷,對D,利用函數(shù)極大值、極小值的符號即可判斷.【詳解】A選項:易知SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<00,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0和SKIPIF1<0,A錯誤;B選項:令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,和SKIPIF1<0上單調(diào)遞增,所以當SKIPIF1<0時,SKIPIF1<0取得極大值,因為SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上沒有零點,當SKIPIF1<0時,SKIPIF1<0取得極小值,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上至多有兩個零點,B錯誤;C選項:設(shè)SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,關(guān)于原點對稱,且SKIPIF1<0,則SKIPIF1<0為奇函數(shù),所以SKIPIF1<0的圖象關(guān)于原點對稱,將SKIPIF1<0的圖象向下平移2個單位長度得到SKIPIF1<0的圖象,所以SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,C正確;D選項:因為SKIPIF1<0的極小值SKIPIF1<0,極大值SKIPIF1<0,所以曲線SKIPIF1<0與SKIPIF1<0軸不相切,D正確.故選:CD.三、填空題5.(2023·云南·校聯(lián)考二模)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為____________.【答案】SKIPIF1<0/SKIPIF1<0【分析】通過二次求導,證明當SKIPIF1<0時,SKIPIF1<0,即得解.【詳解】由題得函數(shù)定義域為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0(或SKIPIF1<0).故答案為:SKIPIF1<06.(2023春·江西·高三校聯(lián)考階段練習)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為__________.【答案】SKIPIF1<0【分析】求導數(shù)SKIPIF1<0,令SKIPIF1<0,解不等式即可得函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故答案為:SKIPIF1<0.7.(2023秋·山東東營·高三東營市第一中學??计谀┖瘮?shù)SKIPIF1<0的單調(diào)遞增區(qū)間為___________.【答案】SKIPIF1<0,SKIPIF1<0【分析】對函數(shù)求導,判斷導函數(shù)的正負,導函數(shù)分子無法判斷正負,再對分子求導,利用導函數(shù)的單調(diào)性來判斷導函數(shù)的正負,進而得出原函數(shù)的單調(diào)區(qū)間.【詳解】因為函數(shù)SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當SKIPIF1<0時,SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0,SKIPIF1<0.8.(2023·福建·統(tǒng)考模擬預(yù)測)函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是_______.【答案】SKIPIF1<0(或SKIPIF1<0也對)【分析】SKIPIF1<0,由復(fù)合函數(shù)單調(diào)性知:SKIPIF1<0的增區(qū)間即為所求.【詳解】SKIPIF1<0,由復(fù)合函數(shù)單調(diào)性知:SKIPIF1<0的增區(qū)間即為所求,SKIPIF1<0.故答案為:SKIPIF1<0(或SKIPIF1<0也對)9.(2023春·安徽亳州·高三??茧A段練習)函數(shù)SKIPIF1<0有兩個零點,則SKIPIF1<0的取值范圍是__.【答案】SKIPIF1<0【分析】函數(shù)SKIPIF1<0有兩個零點,即方程SKIPIF1<0有兩個根,構(gòu)造函數(shù)SKIPIF1<0,利用導數(shù)求出函數(shù)的單調(diào)區(qū)間,從而可畫出函數(shù)SKIPIF1<0的大致圖像,根據(jù)圖象即可得解.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0有兩個零點,SKIPIF1<0方程SKIPIF1<0有兩個根,即方程SKIPIF1<0有兩個根,設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖像有兩個交點,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0時,取得最大值SKIPIF1<0,又SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的大致圖像,如圖所示,由圖像可知,SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.題型三含參數(shù)的函數(shù)單調(diào)性策略方法解決含參數(shù)的函數(shù)的單調(diào)性問題應(yīng)注意兩點(1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)定義域內(nèi)討論,還要確定導數(shù)為0的點和函數(shù)的間斷點.【典例1】已知函數(shù)SKIPIF1<0(其中a為參數(shù)).求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】答案見解析【分析】求出原函數(shù)的導函數(shù),然后對SKIPIF1<0分類求得函數(shù)的單調(diào)區(qū)間;【詳解】SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,當SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;綜上:SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上遞增,無減區(qū)間,當SKIPIF1<0時,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;【典例2】已知函數(shù)SKIPIF1<0,SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】答案見解析【分析】對SKIPIF1<0求導,然后分SKIPIF1<0和SKIPIF1<0兩種情況討論即可;【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減:在SKIPIF1<0上單調(diào)遞增.綜上,當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【典例3】設(shè)函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】當SKIPIF1<0時,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.【分析】對SKIPIF1<0求導,分SKIPIF1<0和SKIPIF1<0和SKIPIF1<0三類討論導數(shù)的正負,即可得出SKIPIF1<0的單調(diào)區(qū)間.【詳解】由題意得SKIPIF1<0的定義域為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,②當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,③當SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當SKIPIF1<0時,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.【典例4】已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0).求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】答案見解析【分析】先求得SKIPIF1<0,結(jié)合SKIPIF1<0和SKIPIF1<0討論SKIPIF1<0的正負,進而求解.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0.①當SKIPIF1<0時,對任意的SKIPIF1<0,SKIPIF1<0,此時函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,無增區(qū)間;②當SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,此時函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0;綜上所述,當SKIPIF1<0時,函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,無增區(qū)間;當SKIPIF1<0時,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0.【題型訓練】一、單選題1.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,若不等式SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】SKIPIF1<0即為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,求出函數(shù)SKIPIF1<0的導函數(shù),分解SKIPIF1<0和SKIPIF1<0討論函數(shù)SKIPIF1<0的單調(diào)性,求出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值,即可得解.【詳解】解:由已知可得SKIPIF1<0即為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,顯然SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上也成立,所以SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0恒成立;當SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,于是,存在SKIPIF1<0,使得SKIPIF1<0,不滿足SKIPIF1<0,舍去此情況,綜上所述,SKIPIF1<0.故選:A.2.(2023秋·四川宜賓·高三四川省宜賓市第四中學校??计谀┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0有四個不同的零點,則a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】討論SKIPIF1<0、SKIPIF1<0,應(yīng)用導數(shù)研究單調(diào)性,要使SKIPIF1<0有四個不同的解,即當兩個區(qū)間均存在兩個零點時,求a的范圍即可.【詳解】由題意知:SKIPIF1<0有四個不同的零點,∴SKIPIF1<0,則SKIPIF1<0有四個不同的解,當SKIPIF1<0時,SKIPIF1<0,其零點情況如下:1)當SKIPIF1<0或SKIPIF1<0時,有SKIPIF1<0;2)當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,則有如下情況:1)當SKIPIF1<0時SKIPIF1<0,即SKIPIF1<0單調(diào)遞增,不可能出現(xiàn)兩個零點,不合題意;2)當SKIPIF1<0時,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減,而SKIPIF1<0有SKIPIF1<0,SKIPIF1<0有SKIPIF1<0,所以只需SKIPIF1<0,得SKIPIF1<0時,SKIPIF1<0必有兩個零點.∴綜上,有SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上各有兩個零點,即共有四個不同的零點.故選:A.【點睛】關(guān)鍵點點睛:應(yīng)用分類討論,利用導數(shù)研究函數(shù)的單調(diào)性,求在滿足零點個數(shù)的情況下參數(shù)范圍.二、填空題3.(2023·全國·高三專題練習)已知SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】SKIPIF1<0,則易得出SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,與SKIPIF1<0矛盾,故SKIPIF1<0,求出函數(shù)的導函數(shù),對SKIPIF1<0進行討論,判斷函數(shù)的單調(diào)性,從而可得出答案.【詳解】解:SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0,這與SKIPIF1<0矛盾,故SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0符合題意;若SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,故當當SKIPIF1<0時,SKIPIF1<0,這與SKIPIF1<0矛盾,綜上所述SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題4.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】對函數(shù)求導,注意定義域,討論SKIPIF1<0、SKIPIF1<0研究導數(shù)的符號,進而確定區(qū)間單調(diào)性.【詳解】由題設(shè)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當SKIPIF1<0時,令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;5.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】求出導函數(shù)SKIPIF1<0,分類討論,由SKIPIF1<0得增區(qū)間,由SKIPIF1<0得減區(qū)間.【詳解】∵SKIPIF1<0,SKIPIF1<0(1)當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,(2)當SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減6.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0在SKIPIF1<0上的單調(diào)性;【答案】答案見解析【分析】討論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況,結(jié)合導數(shù)得出SKIPIF1<0在SKIPIF1<0上的單調(diào)性;【詳解】由題意得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.當SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②若SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增7.(2023·全國·高三專題練習)設(shè)函數(shù)SKIPIF1<0.當SKIPIF1<0時,討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】見解析【分析】由題求導得SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,三種情況討論其單調(diào)性即可.【詳解】由題知,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以求導得SKIPIF1<0,若SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,若SKIPIF1<0,恒有SKIPIF1<0,當且僅當SKIPIF1<0時取等號,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.8.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】先求出函數(shù)的定義域,再求導,分SKIPIF1<0和SKIPIF1<0兩種情況討論,即可得解.【詳解】由SKIPIF1<0,可知定義域SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0成立,即SKIPIF1<0成立,所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0;②當SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0變化時,SKIPIF1<0,SKIPIF1<0的變化情況如下表SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0↗極大值↘極小值↗所以SKIPIF1<0的增區(qū)間為SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,減區(qū)間為SKIPIF1<0,綜上,當SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程全包合同書
- 凈化車間裝飾裝修合同
- 國際航空運輸合同
- 互聯(lián)網(wǎng)汽車租賃服務(wù)合作合同
- 大型貨物運輸合同
- 19大象的耳朵第二課時公開課一等獎創(chuàng)新教學設(shè)計
- 房屋抵押私人合同范本
- 清表工程合同范本
- 沿海運輸合同范本
- 鹵菜合同范本
- 工程項目管理第六版課后部分參考答案
- 除塵工程設(shè)計手冊(第三版)
- 安慶興達新材料有限公司年產(chǎn)24萬噸聚苯乙烯(PS)和19萬噸可發(fā)性聚苯乙烯(EPS)項目環(huán)境影響報告書
- 2022-2023學年高中政治統(tǒng)編版選擇性必修三12-2逆向思維的含義與作用 第2課時 教學設(shè)計
- 橢圓的光學性質(zhì)證明及應(yīng)用
- 《全套可編輯地圖》
- 02J331地溝及蓋板圖集
- 智能控燈上課課件
- 兒童貧血的防治
- 中國古代寓言故事大全目錄
- 2021高考數(shù)學上海卷真題及解析
評論
0/150
提交評論