![新高考數(shù)學(xué)二輪復(fù)習(xí)專題培優(yōu)練習(xí)專題10 導(dǎo)數(shù)解答題分類練(解析版)_第1頁](http://file4.renrendoc.com/view12/M07/06/1A/wKhkGWa3_QSALtn3AAFPGzm3PJY202.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題培優(yōu)練習(xí)專題10 導(dǎo)數(shù)解答題分類練(解析版)_第2頁](http://file4.renrendoc.com/view12/M07/06/1A/wKhkGWa3_QSALtn3AAFPGzm3PJY2022.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題培優(yōu)練習(xí)專題10 導(dǎo)數(shù)解答題分類練(解析版)_第3頁](http://file4.renrendoc.com/view12/M07/06/1A/wKhkGWa3_QSALtn3AAFPGzm3PJY2023.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題培優(yōu)練習(xí)專題10 導(dǎo)數(shù)解答題分類練(解析版)_第4頁](http://file4.renrendoc.com/view12/M07/06/1A/wKhkGWa3_QSALtn3AAFPGzm3PJY2024.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題培優(yōu)練習(xí)專題10 導(dǎo)數(shù)解答題分類練(解析版)_第5頁](http://file4.renrendoc.com/view12/M07/06/1A/wKhkGWa3_QSALtn3AAFPGzm3PJY2025.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題10導(dǎo)數(shù)解答題分類練一、曲線的切線問題1.(2023屆河南省開封市通許縣高三沖刺卷)已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0相切,求實(shí)數(shù)SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象相切于點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由②③可得SKIPIF1<0④,易知SKIPIF1<0.由①得SKIPIF1<0,代入④可得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0.(2)令SKIPIF1<0,可得SKIPIF1<0,由題意可得SKIPIF1<0只有一個(gè)根.易知SKIPIF1<0不是方程SKIPIF1<0的根,所以SKIPIF1<0,所以由SKIPIF1<0,可得SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的圖象只有一個(gè)交點(diǎn).SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.所以SKIPIF1<0.所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,畫出函數(shù)SKIPIF1<0的圖象如圖所示:
由圖可知,若SKIPIF1<0與SKIPIF1<0的圖象只有一個(gè)交點(diǎn),則SKIPIF1<0.所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2024屆福建省莆田哲理中學(xué)高三上學(xué)期月考)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)試討論函數(shù)SKIPIF1<0的單調(diào)性.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,切點(diǎn)為SKIPIF1<0又因?yàn)镾KIPIF1<0所以SKIPIF1<0,即SKIPIF1<0所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,即SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增3.(2024屆重慶市第一中學(xué)高三上學(xué)期開學(xué)考)已知函數(shù)SKIPIF1<0.(1)設(shè)SKIPIF1<0,經(jīng)過點(diǎn)SKIPIF1<0作函數(shù)SKIPIF1<0圖像的切線,求切線的方程;(2)若函數(shù)SKIPIF1<0有極大值,無最大值,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0時(shí)SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則切線斜率為SKIPIF1<0,切線方程:SKIPIF1<0,將點(diǎn)SKIPIF1<0帶入得:SKIPIF1<0,此時(shí)斜率SKIPIF1<0,所以切線方程為SKIPIF1<0.(2)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,注意到SKIPIF1<0時(shí),SKIPIF1<0,注意到SKIPIF1<0時(shí),SKIPIF1<0,故存在SKIPIF1<0,使得SKIPIF1<0,在SKIPIF1<0時(shí)SKIPIF1<0單調(diào)遞減,在SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,函數(shù)SKIPIF1<0有極小值,無極大值,不符合題意.(2)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,無極值和最值.若SKIPIF1<0,即SKIPIF1<0,此時(shí)存在SKIPIF1<0,使得SKIPIF1<0,且在SKIPIF1<0有SKIPIF1<0單調(diào)遞減;在SKIPIF1<0有SKIPIF1<0單調(diào)遞增,此時(shí)SKIPIF1<0為SKIPIF1<0的極大值.注意到SKIPIF1<0時(shí)SKIPIF1<0,要使SKIPIF1<0無最大值,則還應(yīng)滿足SKIPIF1<0,即SKIPIF1<0,同時(shí)SKIPIF1<0,帶入SKIPIF1<0整理得SKIPIF1<0.由于SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,即SKIPIF1<0,綜上實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.4.(2024屆江蘇省南通市高三上學(xué)期質(zhì)量監(jiān)測(cè))已知函數(shù)SKIPIF1<0的極小值為SKIPIF1<0,其導(dǎo)函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0的解析式;(2)若曲線SKIPIF1<0恰有三條過點(diǎn)SKIPIF1<0的切線,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0的圖象經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn).所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以SKIPIF1<0在SKIPIF1<0處取得極小值,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解方程組SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.(2)設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以切線方程為SKIPIF1<0,將SKIPIF1<0代入上式,得SKIPIF1<0.因?yàn)榍€SKIPIF1<0恰有三條過點(diǎn)SKIPIF1<0的切線,所以方程SKIPIF1<0有三個(gè)不同實(shí)數(shù)解.記SKIPIF1<0,則導(dǎo)函數(shù)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或1.列表:SKIPIF1<0SKIPIF1<00SKIPIF1<01SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0↗極大↘極小↗所以SKIPIF1<0的極大值為SKIPIF1<0,SKIPIF1<0的極小值為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0的取值范圍是SKIPIF1<0.5.(2024屆上海市華東師范大學(xué)第二附屬中學(xué)高三上學(xué)期質(zhì)量調(diào)研)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)殚_區(qū)間SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0與SKIPIF1<0的圖象只有唯一的公共點(diǎn),則稱切線SKIPIF1<0是SKIPIF1<0的一條“SKIPIF1<0切線”.(1)判斷函數(shù)SKIPIF1<0是否存在“SKIPIF1<0切線”,若存在,請(qǐng)寫出一條“SKIPIF1<0切線”的方程,若不存在,請(qǐng)說明理由;(2)設(shè)SKIPIF1<0,若對(duì)任意正實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0都存在“SKIPIF1<0切線”,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)已知實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,求證:函數(shù)SKIPIF1<0存在無窮多條“SKIPIF1<0切線”,且至少一條“SKIPIF1<0切線”的切點(diǎn)的橫坐標(biāo)不超過SKIPIF1<0.【解析】(1)記SKIPIF1<0,則SKIPIF1<0取SKIPIF1<0,SKIPIF1<0,切線方程為SKIPIF1<0.與函數(shù)SKIPIF1<0聯(lián)立,得SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上嚴(yán)格增,在SKIPIF1<0上嚴(yán)格減,SKIPIF1<0,故函數(shù)SKIPIF1<0只有一個(gè)零點(diǎn)SKIPIF1<0,故SKIPIF1<0是一條“SKIPIF1<0切線”:(2)SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖像上,點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0,與SKIPIF1<0聯(lián)立得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(*)由題意得直線SKIPIF1<0為“SKIPIF1<0切線”,故方程(*)在SKIPIF1<0上有且僅有一解SKIPIF1<0則SKIPIF1<0或SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0是方程(*)的唯一解(此時(shí)有無數(shù)條“SKIPIF1<0切線”切點(diǎn)橫坐標(biāo)為SKIPIF1<0上的任意值).若SKIPIF1<0,則SKIPIF1<0(此時(shí)只有一條“SKIPIF1<0切線”,切點(diǎn)的橫坐標(biāo)為SKIPIF1<0)或SKIPIF1<0(此時(shí)有無數(shù)條“SKIPIF1<0切線”,切點(diǎn)橫坐標(biāo)為SKIPIF1<0上的任意值)綜上,SKIPIF1<0.(3)證明:SKIPIF1<0,將點(diǎn)SKIPIF1<0處的切線SKIPIF1<0的方程與SKIPIF1<0聯(lián)立得SKIPIF1<0,記SKIPIF1<0,則直線SKIPIF1<0為“SKIPIF1<0切線”SKIPIF1<0函數(shù)SKIPIF1<0有且僅有一個(gè)零點(diǎn)SKIPIF1<0(此時(shí),一個(gè)SKIPIF1<0對(duì)應(yīng)一條“SKIPIF1<0切線”),顯然SKIPIF1<0是SKIPIF1<0的零點(diǎn),故只要SKIPIF1<0沒其他零點(diǎn).此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0,SKIPIF1<0恒成立,此時(shí)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故此時(shí)SKIPIF1<0為SKIPIF1<0唯一的極小值點(diǎn)(也是最小值點(diǎn)),而SKIPIF1<0,故SKIPIF1<0無其他零點(diǎn),故直線SKIPIF1<0為“SKIPIF1<0切線”,因SKIPIF1<0的任意性,故函數(shù)SKIPIF1<0存在無窮多條“SKIPIF1<0切線”,有一條“SKIPIF1<0切線”的切點(diǎn)的橫坐標(biāo)為SKIPIF1<0.二、含參函數(shù)的單調(diào)性問題6.(2024屆山東省泰安市肥城市高三上學(xué)期9月月考)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),可知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,可得SKIPIF1<0時(shí),有SKIPIF1<0,SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明:當(dāng)SKIPIF1<0時(shí),要證SKIPIF1<0成立,只需證SKIPIF1<0成立,只需證SKIPIF1<0即可.因?yàn)镾KIPIF1<0,由(1)知,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0時(shí),有SKIPIF1<0;SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,可知SKIPIF1<0,則有SKIPIF1<0,所以有SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.7.(2024屆江西省豐城厚一學(xué)校高三上學(xué)期9月月考)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,使得SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求導(dǎo)得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0單調(diào)遞增;所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(1)知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,于是當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,使得SKIPIF1<0成立,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,令函數(shù)SKIPIF1<0,求導(dǎo)得SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,于是函數(shù)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,使得SKIPIF1<0.8.(2024屆四川省仁壽第一中學(xué)校高三上學(xué)期9月月考)已知a為實(shí)常數(shù),函數(shù)SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù))(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.【解析】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上:SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(2)由(1)得,SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0遞增,不可能有2個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,∴函數(shù)SKIPIF1<0只有1個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,SKIPIF1<0為函數(shù)SKIPIF1<0的最小值,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0遞增,且SKIPIF1<0,故SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0由于SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有2個(gè)零點(diǎn).9.(2024屆江蘇省淮安市高三上學(xué)期第一次調(diào)研測(cè)試)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,要證明SKIPIF1<0,只要證SKIPIF1<0,即證SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,列表得aSKIPIF1<01SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0單調(diào)遞減極小值單調(diào)遞增所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.10.(2024屆湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)高三上學(xué)期月考)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由于SKIPIF1<0,所以SKIPIF1<0恒成立,此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.(2)我們先證明引理:SKIPIF1<0,恒有SKIPIF1<0且SKIPIF1<0.引理的證明:設(shè)SKIPIF1<0,SKIPIF1<0.故只需證明SKIPIF1<0,恒有SKIPIF1<0,SKIPIF1<0.由于SKIPIF1<0,知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,恒有SKIPIF1<0.由于SKIPIF1<0,知當(dāng)SKIPIF1<0,均有SKIPIF1<0,所以恒有SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0.所以SKIPIF1<0,恒有SKIPIF1<0.綜上,引理得證.回到原題:由(1)得SKIPIF1<0,故只需證明:對(duì)SKIPIF1<0,恒有SKIPIF1<0,即SKIPIF1<0.由引理得SKIPIF1<0.命題得證.三、函數(shù)零點(diǎn)與方程實(shí)根個(gè)數(shù)問題11.(2024屆江西省全南中學(xué)高三上學(xué)期開學(xué)考試)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極小值;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0的極小值為SKIPIF1<0.(2)解:若SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn).若SKIPIF1<0時(shí),由SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,①若SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn);②若SKIPIF1<0時(shí),可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,又由SKIPIF1<0,只需討論SKIPIF1<0的符號(hào),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上無零點(diǎn).③若SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,又由SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn),綜上可得,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.12.(2023屆海南省??谑懈呷聦W(xué)期學(xué)生學(xué)科能力診斷)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極值;(2)若函數(shù)SKIPIF1<0至少有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的最小值.【解析】(1)由題意得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0.(2)由SKIPIF1<0,即得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0(舍去),令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0的最小值為SKIPIF1<0,又SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,故存在唯一的SKIPIF1<0,使SKIPIF1<0,當(dāng)x變化時(shí),SKIPIF1<0的變化情況如表:xSKIPIF1<0SKIPIF1<0SKIPIF1<01SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0+0-0+SKIPIF1<0增極大值減極小值3增當(dāng)SKIPIF1<0且無限趨近于0時(shí),SKIPIF1<0,由于SKIPIF1<0趨近于負(fù)無窮小,故SKIPIF1<0趨近于負(fù)無窮小,由于SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,作出SKIPIF1<0的大致圖像如圖:要使函數(shù)SKIPIF1<0至少有兩個(gè)不同的零點(diǎn),則直線SKIPIF1<0與SKIPIF1<0的圖象至少有兩個(gè)交點(diǎn),故需使SKIPIF1<0,即實(shí)數(shù)m的最小值為3.13.(2024屆北京市陳經(jīng)綸中學(xué)高三上學(xué)期9月階段性診斷)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0在SKIPIF1<0零點(diǎn)的個(gè)數(shù),并說明理由.【解析】(1)由SKIPIF1<0可得SKIPIF1<0,此時(shí)切線斜率為SKIPIF1<0,而SKIPIF1<0;所以切線方程為SKIPIF1<0,即SKIPIF1<0;即曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0;(2)根據(jù)題意,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即可得SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0恒成立;令SKIPIF1<0,則SKIPIF1<0;顯然SKIPIF1<0在SKIPIF1<0上滿足SKIPIF1<0,而SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立;即SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0;所以SKIPIF1<0即可;因此實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(3)令SKIPIF1<0,即可得SKIPIF1<0;構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,如下圖中實(shí)曲線所示:又函數(shù)SKIPIF1<0恒過SKIPIF1<0,且SKIPIF1<0,易知SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0;又SKIPIF1<0,所以SKIPIF1<0(圖中虛線)在SKIPIF1<0范圍內(nèi)恒在SKIPIF1<0(圖中實(shí)直線)的上方;所以由圖易知SKIPIF1<0與SKIPIF1<0在SKIPIF1<0范圍內(nèi)僅有一個(gè)交點(diǎn),即函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)僅有一個(gè)零點(diǎn).14.(2023屆河南省部分學(xué)校高三押題信息卷)已知函數(shù)SKIPIF1<0.(1)求證:曲線SKIPIF1<0僅有一條過原點(diǎn)的切線;(2)若SKIPIF1<0時(shí),關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)切點(diǎn)SKIPIF1<0,則切線方程為SKIPIF1<0,當(dāng)切線過原點(diǎn)時(shí)有SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即切點(diǎn)有且只有一個(gè),則曲線SKIPIF1<0僅有一條過原點(diǎn)的切線,即得證.(2)關(guān)于SKIPIF1<0的方程SKIPIF1<0有唯一解,即方程SKIPIF1<0,SKIPIF1<0有唯一解,令SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.易知SKIPIF1<0的圖象與直線SKIPIF1<0有且僅有一個(gè)交點(diǎn),滿足題意,此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),設(shè)SKIPIF1<0有兩個(gè)根SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.①若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞減,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故要使得SKIPIF1<0有唯一解,則SKIPIF1<0或SKIPIF1<0恒成立.此時(shí)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則極大值SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.所以SKIPIF1<0,又SKIPIF1<0恒成立,故SKIPIF1<0,SKIPIF1<0;同理,極小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)無最小值,此時(shí)無實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0恒成立.②若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,不滿足SKIPIF1<0;③若SKIPIF1<0,由①可得SKIPIF1<0;故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.四、不等式恒成立問題15.(2023屆河南省信陽高級(jí)中學(xué)高三下學(xué)期3月測(cè)試)已知函數(shù)SKIPIF1<0.(1)SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),求SKIPIF1<0的最小值;(2)證明:對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù));(3)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)依題意,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上SKIPIF1<0單調(diào)遞減;在區(qū)間SKIPIF1<0上SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得最小值為SKIPIF1<0.(2)要證明:對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0,即證明SKIPIF1<0,即證明SKIPIF1<0,由(1)得SKIPIF1<0,即SKIPIF1<0令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0.(3)若不等式SKIPIF1<0恒成立,此時(shí)SKIPIF1<0,則SKIPIF1<0恒成立,令SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0.16.(2024屆河北省保定市唐縣第一中學(xué)高三上學(xué)期9月月考)已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)若SKIPIF1<0在SKIPIF1<0上恒成立,求a的取值范圍:(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),證明:SKIPIF1<0.【解析】(1)若SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即a的取值范圍是SKIPIF1<0.(2)令SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車充電樁設(shè)備采購(gòu)合同協(xié)議書
- 2024婦女節(jié)活動(dòng)中班(6篇)
- 2025年江西省高三語文2月統(tǒng)一調(diào)研聯(lián)考試卷附答案解析
- 河北省高職單招2024年數(shù)學(xué)真題仿真卷
- 2025年全球貿(mào)易合同樣式
- 2025年車載高壓空壓機(jī)組項(xiàng)目提案報(bào)告模范
- 2025年鐵礦石采選項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模范
- 2025年勞動(dòng)力輸入安全保障協(xié)議
- 2025年上饒年終合同樣本
- 2025年中外著作權(quán)許可使用合同樣本
- 華為認(rèn)證 HCIA-Security 安全 H12-711考試題庫(kù)(共800多題)
- 員工技能熟練度評(píng)價(jià)
- 部編新教材人教版七年級(jí)上冊(cè)歷史重要知識(shí)點(diǎn)歸納
- DB51∕T 2681-2020 預(yù)拌混凝土攪拌站廢水廢漿回收利用技術(shù)規(guī)程
- 重點(diǎn)時(shí)段及節(jié)假日前安全檢查表
- 道路標(biāo)線施工技術(shù)規(guī)程(已執(zhí)行)
- 給排水管道工程分項(xiàng)、分部、單位工程劃分
- 《傻子上學(xué)》臺(tái)詞
- 高中英語新課程標(biāo)準(zhǔn)解讀 (課堂PPT)
- 石灰石石膏濕法脫硫化學(xué)分析方案
- 《數(shù)學(xué)趣味活動(dòng)》PPT課件.ppt
評(píng)論
0/150
提交評(píng)論