




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以,為直徑的圓的方程是A. B.C. D.2.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.3.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.4.已知集合,,則等于()A. B. C. D.5.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.6.復數(shù)()A. B. C.0 D.7.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.8.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.9.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.410.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.811.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.112.已知是虛數(shù)單位,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.14.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.15.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)記數(shù)列的前n項和為,,求數(shù)列的前n項和.18.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.19.(12分)在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.20.(12分)已知函數(shù)和的圖象關(guān)于原點對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.21.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.22.(10分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設圓的標準方程,建立方程組,屬于基礎題.2、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.3、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎題.4、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型.5、D【解析】
由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.6、C【解析】略7、D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.8、A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標.9、B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關(guān)鍵在于作出集合所表示的點的圖象,再運用數(shù)形結(jié)合的思想,屬于基礎題.10、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.11、B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.12、B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.14、【解析】
由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.15、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點對稱,結(jié)合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點對稱,,函數(shù)關(guān)于點對稱,所以兩個函數(shù)圖象的交點也關(guān)于點(1,2)對稱,與圖像的交點為,,…,,兩兩關(guān)于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.16、8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數(shù)列是等差數(shù)列,設數(shù)列的公差為,由可得,因為成等比數(shù)列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.18、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標方程轉(zhuǎn)化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.19、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標和直角坐標轉(zhuǎn)化公式,求得的直角坐標方程.(2)設出點的坐標,利用點到直線的距離公式求得最小值的表達式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離,因為.當且僅當時,取得最小值為,此時的直角坐標為即.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數(shù)方程求解點到直線距離的最小值問題,屬于中檔題.20、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.21、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025西安科技大學高新學院輔導員考試試題及答案
- 2025炎黃職業(yè)技術(shù)學院輔導員考試試題及答案
- 2025石家莊職業(yè)技術(shù)學院輔導員考試試題及答案
- 2025荊楚理工學院輔導員考試試題及答案
- 2025福建生物工程職業(yè)技術(shù)學院輔導員考試試題及答案
- T/ZGSCJXH 1-2019陳年白酒收藏評價指標體系
- 綠色建筑設計管理
- 健康體檢教學課件
- 美的崗位薪酬結(jié)構(gòu)設計體系
- 湖北神農(nóng)架中和旅游有限公司招聘筆試題庫2025
- GB∕T 2518-2019 連續(xù)熱鍍鋅和鋅合金鍍層鋼板及鋼帶
- 安徽省2022年中考地理真題試卷(圖片版含答案)
- 青海省部門統(tǒng)計數(shù)據(jù)直報系統(tǒng)
- 常見輸液反應及處理
- 大氣商務勵志年終工作總結(jié)PPT模板課件
- 感悟親情作文指導
- 幼兒園辦園標準
- 10kV及以下架空配電線路設計技術(shù)規(guī)程
- 硅膠安全技術(shù)說明書(MSDS)
- 鋼筋加工下料自動計算表樣品
- 胸痛中心應知應會修改后
評論
0/150
提交評論