版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.3.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.4.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.5.已知函數(shù),以下結論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調遞減函數(shù);③若函數(shù)在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.46.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.7.若復數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.8.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.9.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.10.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.11.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.3212.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足則的取值范圍是______.14.直線過圓的圓心,則的最小值是_____.15.設為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.16.若,則=______,=______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.18.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數(shù)便突破60萬,其中青年學生約有50萬人.現(xiàn)從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學期望;(Ⅲ)為便于聯(lián)絡,現(xiàn)將所有的青年學生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡員,要求每組的聯(lián)絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數(shù)據,以頻率作為概率,給出的最小值.(結論不要求證明)19.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.20.(12分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.22.(10分)已知函數(shù).(1)若在上單調遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.2.A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.3.D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.4.D【解析】
設出的坐標為,依據題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據余弦函數(shù)自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法5.C【解析】
逐一分析選項,①根據函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數(shù)的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.6.C【解析】
利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.7.B【解析】
利用復數(shù)乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數(shù)的乘法運算,考查復數(shù)模的計算,屬于基礎題.8.D【解析】
利用數(shù)列的遞推關系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.9.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.10.C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.11.A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.12.A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應用,由數(shù)形結合法求線性目標函數(shù)的取值范圍,屬于中檔題.14.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質,屬于基礎題.15..【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質.【名師點睛】本題主要考查等差與等比數(shù)列的性質,屬于容易題,在解題過程中,需要建立關于等比數(shù)列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.16.10【解析】
①根據換底公式計算即可得解;②根據同底對數(shù)加法法則,結合①的結果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)①證明見解析;②能,.【解析】
(1)根據拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(?。?,則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【點睛】本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.18.(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】
(Ⅰ)根據比例關系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數(shù)學期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數(shù)為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.【點睛】本題考查了樣本估計總體,分布列,數(shù)學期望,意在考查學生的計算能力和綜合應用能力.19.(1)(2)【解析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.20.(1)詳見解析;(2).【解析】
(1)連接,,則且為的中點,又∵為的中點,∴,又平面,平面,故平面.(2)由平面,得,.以為原點,分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設,則,,,,,.取平面的一個法向量為,由,得:,令,得同理可得平面的一個法向量為∵平面平面,∴解得,得,又,設直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.21.(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據拋物線定義求出p,即可求C的方程及焦點F的坐標;
(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 絕句教案范文集錦6篇
- 教師個人工作計劃2022年
- 大班春節(jié)教案
- 項目管理部門工作計劃范文
- 保溫材料生產項目投資計劃書
- 2022公共衛(wèi)生工作計劃10篇
- 護理專業(yè)自我鑒定10篇
- 年度工作總結合集15篇
- 網絡創(chuàng)新課程設計
- 基督山伯爵讀書筆記15篇
- 電信業(yè)務運營與服務規(guī)范
- 室性心動過速
- 報考中級會計的從事會計工作年限證明模板
- 滅火器、消防栓安全檢查表
- 收費站突發(fā)事件應急預案(10篇)
- 2024年-2025年公路養(yǎng)護工理論知識考試題及答案
- 地 理世界的聚落 課件-2024-2025學年七年級地理上學期(湘教版2024)
- 建筑施工安全檢查標準JGJ59-2011
- (完整)注冊安全工程師考試題庫(含答案)
- 2024秋期國家開放大學《可編程控制器應用實訓》一平臺在線形考(形成任務7)試題及答案
- 虛假信息的傳播與倫理
評論
0/150
提交評論