




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.2.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.3.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根4.已知三棱錐且平面,其外接球體積為()A. B. C. D.5.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.116.設(shè)全集,集合,.則集合等于()A. B. C. D.7.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.329.已知全集,則集合的子集個數(shù)為()A. B. C. D.10.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.712.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.14.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.15.設(shè)全集,集合,,則集合______.16.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.18.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.19.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數(shù)學(xué)期望的最大值.20.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設(shè)公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.21.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.22.(10分)某公司打算引進一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設(shè)正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.2.B【解析】
由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.3.C【解析】
由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.4.A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.5.A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.6.A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.7.D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.8.B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。9.C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題10.D【解析】
將復(fù)數(shù)化簡得,,即可得到對應(yīng)的點為,即可得出結(jié)果.【詳解】,對應(yīng)的點位于第四象限.故選:.【點睛】本題考查復(fù)數(shù)的四則運算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點的對應(yīng),難度容易.11.D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數(shù)量積運算,關(guān)鍵是利用基向量表示所求向量.12.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系以及點到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.14.①【解析】
由三角形的正弦定理和邊角關(guān)系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.15.【解析】
分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:【點睛】本題考查集合的交集與補集運算,屬于基礎(chǔ)題.16.6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當時,,∴;當時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點睛】本題考查通項求解問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2),最大值.【解析】
(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當且僅當,即時取等號,∴當時,體積有最大值.【點睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.18.見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.19.(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數(shù)學(xué)期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復(fù)事件的特點得出,利用二項分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學(xué)期望的最大值為280.【點睛】本題考查獨立重復(fù)事件和二項分布的應(yīng)用,以及離散型分布列和數(shù)學(xué)期望,考查計算能力.20.(1)當時,公路的長度最短為千米;(2)(千米).【解析】
(1)設(shè)切點的坐標為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設(shè),則.令,解得=10.當時,是減函數(shù);當時,是增函數(shù).所以當時,函數(shù)有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導(dǎo)數(shù)解決實際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實際應(yīng)用,還考查解題分析能力和計算能力.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國非保溫鋼制門行業(yè)市場現(xiàn)狀分析規(guī)劃研究報告
- 2025-2030年中國除雪車行業(yè)競爭格局及前景趨勢預(yù)測報告
- 2025-2030年中國防曬品市場運行態(tài)勢及投資前景規(guī)劃研究報告
- 2025-2030年中國鐵水脫硫噴槍市場運行現(xiàn)狀及發(fā)展趨勢預(yù)測報告
- 2025-2030年中國鎢銅市場運營狀況及發(fā)展前景分析報告
- 2025-2030年中國重點地區(qū)文物保護工程市場十三五規(guī)劃與投資戰(zhàn)略研究報告
- 2025-2030年中國醬菜、辣白菜未來運營趨勢及發(fā)展盈利分析報告
- 2025-2030年中國藝術(shù)陶瓷行業(yè)市場現(xiàn)狀調(diào)研與前景規(guī)模預(yù)測報告
- 2025-2030年中國纖維素行業(yè)需求現(xiàn)狀及發(fā)展趨勢分析報告
- 2025貴州省安全員-B證(項目經(jīng)理)考試題庫
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 2024年認證行業(yè)法律法規(guī)及認證基礎(chǔ)知識 CCAA年度確認 試題與答案
- 2024年濰坊工程職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 部編版一年級語文下冊全冊分層作業(yè)設(shè)計
- T∕ACSC 01-2022 輔助生殖醫(yī)學(xué)中心建設(shè)標準(高清最新版)
- 線性空間的定義與性質(zhì)
- 化妝品批生產(chǎn)記錄
- Excel數(shù)據(jù)透視表培訓(xùn)PPT課件
- 化工車間布置原則
- 硬筆書法紙(A3)
評論
0/150
提交評論