版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年福州市高三零模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開安排的概率為()A. B. C. D.2.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.543.已知,,,則()A. B. C. D.4.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.5.若的展開式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.6.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.7.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.8.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.9.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.10.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.111.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④12.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.15.(5分)已知曲線的方程為,其圖象經(jīng)過(guò)點(diǎn),則曲線在點(diǎn)處的切線方程是____________.16.已知,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)金秋九月,丹桂飄香,某高校迎來(lái)了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說(shuō)明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問(wèn)卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.20.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.21.(12分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.22.(10分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開的事件個(gè)數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂(lè)相鄰有4種情況,禮和樂(lè)順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂(lè)相鄰有3種情況,禮和樂(lè)順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.解排列組合問(wèn)題要遵循兩個(gè)原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過(guò)程進(jìn)行分步.具體地說(shuō),解排列組合問(wèn)題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).2.C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.3.B【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【詳解】由于,,故.故選:B.本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.4.C【解析】
因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.5.C【解析】展開式的通項(xiàng)為,因?yàn)檎归_式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開式有關(guān)問(wèn)題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).6.A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡(jiǎn),可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.7.C【解析】
根據(jù),兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.8.A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時(shí),得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時(shí),函數(shù)取得最小值,當(dāng)時(shí),;當(dāng)時(shí),,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問(wèn)題和解答問(wèn)題的能力,試題有一定的難度,屬于中檔試題.9.D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.10.B【解析】
,選B.11.C【解析】
分四類情況進(jìn)行討論,然后畫出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒(méi)有交點(diǎn),即沒(méi)有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則中用代替,用代替,可得,所以④正確.故選:C本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.12.A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14.3【解析】由已知中的三視圖可得該幾何體是一個(gè)以直角梯形為底面,梯形上下邊長(zhǎng)為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點(diǎn)睛:在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要從三個(gè)視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實(shí)際形狀時(shí),一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.15.【解析】
依題意,將點(diǎn)的坐標(biāo)代入曲線的方程中,解得.由,得,則曲線在點(diǎn)處切線的斜率,所以在點(diǎn)處的切線方程是,即.16.【解析】
先求,再根據(jù)的范圍求出即可.【詳解】由題可知,故.故答案為:.本題考查分段函數(shù)函數(shù)值的求解,涉及對(duì)數(shù)的運(yùn)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計(jì)算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計(jì)算公式計(jì)算可得期望.【詳解】(1)∵的觀測(cè)值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.本題考查獨(dú)立性檢驗(yàn)、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機(jī)變量服從于超幾何分布,進(jìn)而利用超幾何分布概率公式求得隨機(jī)變量每個(gè)取值所對(duì)應(yīng)的概率.18.(1)見解析;(2)【解析】
(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過(guò)點(diǎn)作交于,連接,設(shè),連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點(diǎn),又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的一個(gè)法向量為,則,,令,得,設(shè)平面的一個(gè)法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.本題考查空間的面面垂直關(guān)系的證明,二面角的計(jì)算,在證明垂直關(guān)系時(shí),注意運(yùn)用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對(duì)角線互相垂直,屬于基礎(chǔ)題.19.(1)(2)【解析】
(1)把f(x)去絕對(duì)值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對(duì)值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時(shí),.當(dāng)時(shí),即為,解得.當(dāng)時(shí),,解得.當(dāng)時(shí),,解得.綜上,的解集為.(2).,由的圖象知,,.本題主要考查含絕對(duì)值不等式的解法及含絕對(duì)值的函數(shù)的最值問(wèn)題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題20.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;(Ⅱ)在平面中,過(guò)點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因?yàn)槠矫嫫矫?,平面平面所以平面,又因?yàn)槠矫?,所以,因?yàn)?,,平面,平面,所以平面;(Ⅱ)解:在平面中,過(guò)點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個(gè)法向量,則從而,故則直線與平面所成的角為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度博物館安防監(jiān)控系統(tǒng)安裝與維護(hù)服務(wù)協(xié)議3篇
- 2024年公務(wù)員考試都蘭縣《行政職業(yè)能力測(cè)驗(yàn)》最后沖刺試題含解析
- 2024年建筑工程承包簡(jiǎn)易合同(35篇)
- 2024版勞動(dòng)協(xié)議安全管理操作手冊(cè)版
- 《生成可執(zhí)行的ja》課件
- 部編版五年級(jí)語(yǔ)文上冊(cè)第13課《少年中國(guó)說(shuō)(節(jié)選)》精美課件
- 鋼結(jié)構(gòu)餐廳鋼架焊接施工合同
- 電力設(shè)施升級(jí)承攬合同
- 實(shí)習(xí)協(xié)議樣本
- 餐飲業(yè)地面施工合同
- A類《職業(yè)能力傾向測(cè)驗(yàn)》上海市青浦區(qū)2024年事業(yè)單位考試統(tǒng)考試題含解析
- 消防控制室值班服務(wù)各項(xiàng)管理制度
- 角的概念推廣(說(shuō)課課件)
- 2023-2024學(xué)年北京市西城區(qū)高二(上)期末物理試卷(含解析)
- (高清版)DZT 0211-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 重晶石、毒重石、螢石、硼
- 2024年?yáng)|方航天港海陽(yáng)產(chǎn)業(yè)園開發(fā)有限公司招聘筆試參考題庫(kù)含答案解析
- 福建省泉州市2022-2023學(xué)年高一年級(jí)上冊(cè)期末教學(xué)質(zhì)量監(jiān)測(cè)英語(yǔ)試卷(含答案)
- 繼承傳統(tǒng)文化弘揚(yáng)中國(guó)精神
- 高考體育特長(zhǎng)生培訓(xùn)
- 廣東省肇慶市2024屆高三第二次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題(解析版)
- 部門預(yù)算編制培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論